conTree0.3-1 package

Contrast Trees and Boosting

Contrast trees represent a new approach for assessing the accuracy of many types of machine learning estimates that are not amenable to standard (cross) validation methods; see "Contrast trees and distribution boosting", Jerome H. Friedman (2020) <doi:10.1073/pnas.1921562117>. In situations where inaccuracies are detected, boosted contrast trees can often improve performance. Functions are provided to to build such trees in addition to a special case, distribution boosting, an assumption free method for estimating the full probability distribution of an outcome variable given any set of joint input predictor variable values.

  • Maintainer: Balasubramanian Narasimhan
  • License: Apache License 2.0
  • Last published: 2023-11-22