Soybean dataset

Growth of soybean plants

Growth of soybean plants

The Soybean data frame has 412 rows and 5 columns.

Format

This data frame contains the following columns:

  • Plot: a factor giving a unique identifier for each plot.
  • Variety: a factor indicating the variety; Forrest (F) or Plant Introduction #416937 (P).
  • Year: a factor indicating the year the plot was planted.
  • Time: a numeric vector giving the time the sample was taken (days after planting).
  • weight: a numeric vector giving the average leaf weight per plant (g).

Details

These data are described in Davidian and Giltinan (1995, 1.1.3, p.7) as ``Data from an experiment to compare growth patterns of two genotypes of soybeans: Plant Introduction #416937 (P), an experimental strain, and Forrest (F), a commercial variety.'' In order to fit the Nonlinear data we sugest to use the three parameter logistic model as in Pinheiro & Bates (1995).

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New York. (Appendix A.27)

Davidian, M. and Giltinan, D. M. (1995), Nonlinear Models for Repeated Measurement Data, Chapman and Hall, London.

Examples

## Not run: data(Soybean) attach(Soybean) ################################# #A full model (no covariate) y = weight #response x = Time #time #Expression for the three parameter logistic curve exprNL = expression((fixed[1]+random[1])/(1 + exp(((fixed[2]+random[2])- x)/(fixed[3]+random[3])))) #Initial values for fixed effects initial = c(max(y),0.6*max(y),0.73*max(y)) #A median regression (by default) median_reg = QRNLMM(y,x,Plot,initial,exprNL) #Assing the fit fxd = median_reg$res$beta nlmodel = median_reg$res$nlmodel seqc = seq(min(x),max(x),length.out = 500) group.plot(x = Time,y = weight,groups = Plot,type="l", main="Soybean profiles",xlab="time (days)", ylab="mean leaf weight (gr)",col="gray") lines(seqc,nlmodel(x = seqc,fixed = fxd,random = rep(0,3)), lwd=2,col="blue") #Histogram for residuals hist(median_reg$res$residuals) ######################################### #A model for comparing the two genotypes (with covariates) y = weight #response x = Time #time covar = c(Variety)-1 #factor genotype (0=Forrest, 1=Plan Introduction) #Expression for the three parameter logistic curve with a covariate exprNL = expression((fixed[1]+(fixed[4]*covar[1])+random[1])/ (1 + exp(((fixed[2]+random[2])- x)/(fixed[3]+random[3])))) #Initial values for fixed effects initial = c(max(y),0.6*max(y),0.73*max(y),3) # A quantile regression for the three quartiles box_reg = QRNLMM(y,x,Plot,initial,exprNL,covar,p=c(0.25,0.50,0.75)) #Assing the fit for the median (second quartile) fxd = box_reg[[2]]$res$beta nlmodel = box_reg[[2]]$res$nlmodel seqc = seq(min(x),max(x),length.out = 500) group.plot(x = Time[Variety=="P"],y = weight[Variety=="P"], groups = Plot[Variety=="P"],type="l",col="light blue", main="Soybean profiles by genotype",xlab="time (days)", ylab="mean leaf weight (gr)") group.lines(x = Time[Variety=="F"],y = weight[Variety=="F"], groups = Plot[Variety=="F"],col="gray") lines(seqc,nlmodel(x = seqc,fixed = fxd,random = rep(0,3),covar=1), lwd=2,col="blue") lines(seqc,nlmodel(x = seqc,fixed = fxd,random = rep(0,3),covar=0), lwd=2,col="black") ## End(Not run)
  • Maintainer: Christian E. Galarza
  • License: GPL (>= 2)
  • Last published: 2024-07-12

About the dataset

  • Number of rows: 412
  • Number of columns: 5
  • Class: data.frame

Column names and types

  • Plot:factor
  • Variety:factor
  • Year:integer
  • Time:integer
  • weight:numeric