The Soybean data frame has 412 rows and 5 columns.
Format
This data frame contains the following columns:
Plot: a factor giving a unique identifier for each plot.
Variety: a factor indicating the variety; Forrest (F) or Plant Introduction #416937 (P).
Year: a factor indicating the year the plot was planted.
Time: a numeric vector giving the time the sample was taken (days after planting).
weight: a numeric vector giving the average leaf weight per plant (g).
Details
These data are described in Davidian and Giltinan (1995, 1.1.3, p.7) as ``Data from an experiment to compare growth patterns of two genotypes of soybeans: Plant Introduction #416937 (P), an experimental strain, and Forrest (F), a commercial variety.'' In order to fit the Nonlinear data we sugest to use the three parameter logistic model as in Pinheiro & Bates (1995).
Source
Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New York. (Appendix A.27)
Davidian, M. and Giltinan, D. M. (1995), Nonlinear Models for Repeated Measurement Data, Chapman and Hall, London.
Examples
## Not run:data(Soybean)attach(Soybean)##################################A full model (no covariate)y = weight #responsex = Time #time#Expression for the three parameter logistic curveexprNL = expression((fixed[1]+random[1])/(1+ exp(((fixed[2]+random[2])- x)/(fixed[3]+random[3]))))#Initial values for fixed effectsinitial = c(max(y),0.6*max(y),0.73*max(y))#A median regression (by default)median_reg = QRNLMM(y,x,Plot,initial,exprNL)#Assing the fitfxd = median_reg$res$beta
nlmodel = median_reg$res$nlmodel
seqc = seq(min(x),max(x),length.out =500)group.plot(x = Time,y = weight,groups = Plot,type="l", main="Soybean profiles",xlab="time (days)", ylab="mean leaf weight (gr)",col="gray")lines(seqc,nlmodel(x = seqc,fixed = fxd,random = rep(0,3)), lwd=2,col="blue")#Histogram for residualshist(median_reg$res$residuals)##########################################A model for comparing the two genotypes (with covariates)y = weight #responsex = Time #timecovar = c(Variety)-1#factor genotype (0=Forrest, 1=Plan Introduction)#Expression for the three parameter logistic curve with a covariateexprNL = expression((fixed[1]+(fixed[4]*covar[1])+random[1])/(1+ exp(((fixed[2]+random[2])- x)/(fixed[3]+random[3]))))#Initial values for fixed effectsinitial = c(max(y),0.6*max(y),0.73*max(y),3)# A quantile regression for the three quartilesbox_reg = QRNLMM(y,x,Plot,initial,exprNL,covar,p=c(0.25,0.50,0.75))#Assing the fit for the median (second quartile)fxd = box_reg[[2]]$res$beta
nlmodel = box_reg[[2]]$res$nlmodel
seqc = seq(min(x),max(x),length.out =500)group.plot(x = Time[Variety=="P"],y = weight[Variety=="P"], groups = Plot[Variety=="P"],type="l",col="light blue", main="Soybean profiles by genotype",xlab="time (days)", ylab="mean leaf weight (gr)")group.lines(x = Time[Variety=="F"],y = weight[Variety=="F"], groups = Plot[Variety=="F"],col="gray")lines(seqc,nlmodel(x = seqc,fixed = fxd,random = rep(0,3),covar=1), lwd=2,col="blue")lines(seqc,nlmodel(x = seqc,fixed = fxd,random = rep(0,3),covar=0), lwd=2,col="black")## End(Not run)