quasif dataset

Simulated data set with subjects and items requiring quasi-F ratios

Simulated data set with subjects and items requiring quasi-F ratios

Simulated lexical decision latencies with SOA as treatment, traditionally requiring an analysis using quasi-F ratios, as available in Raaijmakers et al. (1999). data

data(quasif)

Format

A data frame with 64 observations on the following 4 variables.

  • Subject: a factor coding subjects.

  • RT: a numeric vector for simulated reaction times in lexical decision.

  • Item: a factor coding items.

  • SOA: a factor coding SOA treatment with levels long

     and `short`.
    

Source

Raaijmakers, J.G.W., Schrijnemakers, J.M.C. & Gremmen, F. (1999) How to deal with "The language as fixed effect fallacy": common misconceptions and alternative solutions, Journal of Memory and Language, 41, 416-426.

Examples

## Not run: data(quasif) items.quasif.fnc(quasif) ## End(Not run)
  • Maintainer: R. H. Baayen
  • License: GPL (>= 2)
  • Last published: 2019-01-30

About the dataset

  • Number of rows: 64
  • Number of columns: 4
  • Class: data.frame

Column names and types

  • Subject:factor
  • RT:integer
  • Item:factor
  • SOA:factor