theft2 dataset

theft Bayesian Networks

theft Bayesian Networks

Evaluating methods for setting a prior probability of guilt. data

Format

A discrete Bayesian network representing a legal scenario. Probabilities were given within the referenced paper. The vertices are:

  • AtCrimeScene: (F, T);
  • EredHanded: (F, T);
  • EseenCS: (F, T);
  • EWallet: (F, T);
  • Guilty: (F, T);

Returns

An object of class bn.fit. Refer to the documentation of bnlearn for details.

References

van Leeuwen, L., Verheij, B., Verbrugge, R., & Renooij, S. (2023). Evaluating Methods for Setting a Prior Probability of Guilt. In Legal Knowledge and Information Systems (pp. 63-72). IOS Press.

  • Maintainer: Manuele Leonelli
  • License: MIT + file LICENSE
  • Last published: 2025-04-09

About the dataset

  • Number of columns: 5
  • Class: bn.fit, bn.fit.dnet

Column names and types

  • AtCrimeScene:bn.fit.dnode
  • EredHanded:bn.fit.dnode
  • EseenCS:bn.fit.dnode
  • Ewallet:bn.fit.dnode
  • Guilty:bn.fit.dnode