CVP_RIDGE function

Parallel Ridge CV (uses CVP_RIDGEc)

Parallel Ridge CV (uses CVP_RIDGEc)

Parallel implementation of cross validation for RIDGEsigma.

CVP_RIDGE(X = NULL, lam = 10^seq(-2, 2, 0.1), K = 5, cores = 1, trace = c("none", "progress", "print"))

Arguments

  • X: nxp data matrix. Each row corresponds to a single observation and each column contains n observations of a single feature/variable.
  • lam: positive tuning parameters for ridge penalty. If a vector of parameters is provided, they should be in increasing order. Defaults to grid of values 10^seq(-2, 2, 0.1).
  • K: specify the number of folds for cross validation.
  • cores: option to run CV in parallel. Defaults to cores = 1.
  • trace: option to display progress of CV. Choose one of progress to print a progress bar, print to print completed tuning parameters, or none.

Returns

returns list of returns which includes: - lam: optimal tuning parameter.

  • min.error: minimum average cross validation error for optimal parameters.

  • avg.error: average cross validation error across all folds.

  • cv.error: cross validation errors (negative validation likelihood).

  • Maintainer: Matt Galloway
  • License: GPL (>= 2)
  • Last published: 2018-08-02