This function extracts the predictors used in candidate models. The function is currently implemented for glm, glmmTMB, gls, lm, lme, merMod, lmerModLmerTest, rlm, survreg object classes that are stored in a list as well as various models of unmarkedFit
classes.
1.1
extractX(cand.set,...)## S3 method for class 'AICaov.lm'extractX(cand.set,...)## S3 method for class 'AICglm.lm'extractX(cand.set,...)## S3 method for class 'AICglmmTMB'extractX(cand.set,...)## S3 method for class 'AIClm'extractX(cand.set,...)## S3 method for class 'AICgls'extractX(cand.set,...)## S3 method for class 'AIClme'extractX(cand.set,...)## S3 method for class 'AICglmerMod'extractX(cand.set,...)## S3 method for class 'AIClmerMod'extractX(cand.set,...)## S3 method for class 'AIClmerModLmerTest'extractX(cand.set,...)## S3 method for class 'AICrlm.lm'extractX(cand.set,...)## S3 method for class 'AICsurvreg'extractX(cand.set,...)## S3 method for class 'AICunmarkedFitOccu'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitColExt'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitOccuRN'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitPCount'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitPCO'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitDS'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitGDS'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitOccuFP'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitMPois'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitGMM'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitGPC'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitOccuMulti'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitOccuMS'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitOccuTTD'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitMMO'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitDSO'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitGOccu'extractX(cand.set, parm.type =NULL,...)## S3 method for class 'AICunmarkedFitOccuComm'extractX(cand.set, parm.type =NULL,...)
Arguments
cand.set: a list storing each of the models in the candidate model set.
parm.type: this argument specifies the parameter type on which the predictors will be extracted and is only relevant for models of unmarkedFit classes. The character strings supported vary with the type of model fitted. For unmarkedFitOccu, unmarkedFitOccuMulti, and unmarkedFitOccuComm objects, either psi or detect can be supplied to indicate whether the parameter is on occupancy or detectability, respectively. For unmarkedFitColExt and unmarkedFitOccuTTD, possible values are psi, gamma, epsilon, and detect, for parameters on occupancy in the inital year, colonization, extinction, and detectability, respectively. For unmarkedFitOccuFP objects, one can specify psi, detect, falsepos, and certain, for occupancy, detectability, probability of assigning false-positives, and probability detections are certain, respectively. For unmarkedFitOccuMS objects, possible values are psi, phi, or detect, denoting occupancy, transition, and detection probabilities, respectively. For unmarkedFitOccuRN objects, either lambda or detect can be entered for abundance and detectability parameters, respectively. For unmarkedFitPCount and unmarkedFitMPois objects, lambda or detect
denote parameters on abundance and detectability, respectively. For unmarkedFitPCO, unmarkedFitMMO, and unmarkedFitDSO objects, one can enter lambda, gamma, omega, iota, or detect, to specify parameters on abundance, recruitment, apparent survival, immigration, and detectability, respectively. For unmarkedFitDS objects, lambda and detect are supported. For unmarkedFitGDS, lambda, phi, and detect denote abundance, availability, and detection probability, respectively. For unmarkedFitGMM and unmarkedFitGPC objects, lambda, phi, and detect denote abundance, availability, and detectability, respectively. For unmarkedFitGOccu objects, possible values are psi, phi, or detect, denoting occupancy, availability, and detection probabilities, respectively.
...: additional arguments passed to the function.
Details
The candidate models must be stored in a list. The results of extractX are useful in preparing a newdata
data frame to use in computing model-averaged predictions with modavgPred or differences between groups with modavgEffect (Burnham and Anderson 2002, Anderson 2008, Burnham et al. 2011).
Returns
extractX returns an object of class extractX with the following components: - predictors: a character vector of the names of the predictors included in the model, excluding the intercept term.
data: a data frame or, in the case of unmarkedFit objects, a list of data frames (e.g., obsCovs, siteCovs, yearlySiteCovs).
References
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Burnham, K. P., Anderson, D. R., Huyvaert, K. P. (2011) AIC model selection and multimodel inference in behaviorial ecology: some background, observations and comparisons. Behavioral Ecology and Sociobiology 65 , 23--25.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27 , 169--180.
Pinheiro, J. C., Bates, D. M. (2000). Mixed-effects Models in S and S-PLUS. Springer Verlag: New York.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60 , 108--115.