apci.plot.hexagram function

Plot the hexagram heatmap

Plot the hexagram heatmap

Plot the cohort effect in the style of hexagram

apci.plot.hexagram( model, age, period, first_age, first_period, interval, first_age_isoline = NULL, first_period_isoline = NULL, isoline_interval = NULL, color_scale = NULL, color_map = NULL, line_width = 0.5, line_color = "grey", label_size = 0.5, label_color = "black", scale_units = "Quintile", wrap_cohort_labels = TRUE, quantile = NULL )

Arguments

  • model: A list recording the results from function apci.
  • age: An object of class character representing the age group index taking on a small number of distinct values in the data. Usually, the vector should be converted to a factor (or the terms of "category" and "enumerated type").
  • period: An object of class character, similar to the argument of age, representing the time period index in the data.
  • first_age: The first age group.
  • first_period: The first period group.
  • interval: The width of age and period groups.
  • first_age_isoline: Isoline for the first age group.
  • first_period_isoline: Isoline for the first period group.
  • isoline_interval: Interval of isoline.
  • color_scale: A vector including two numbers indicating the limit of the values to be plotted. The first number is the minimum value to be visualized and the second is the maximum value to be visualized. If NULL, the algorithm will automatically select the limits from the data (estimation results) to set up the scale.
  • color_map: A vector, representing the color palettes to be used in the figure. The default setting is greys if color_map is NULL. Alternations, for example, can be c("blue", "yellow"), blues, etc.
  • line_width: Width of lines. Default is 0.5.
  • line_color: Line colors. Default is grey.
  • label_size: Axis label size. Default is 0.5.
  • label_color: Axis label color. Default is Black.
  • scale_units: Units of scales.
  • wrap_cohort_labels: Display the cohort label or not. The default is TRUE.
  • quantile: A number valued between 0 and 1, representing the desirable percentiles to be used in visualizing the data or model. If NULL, the original scale of the outcome variable will be used.

Returns

A hexagram visualizing the APC-I model results.

Examples

# load package library("APCI") # load data test_data <- APCI::women9017 test_data$acc <- as.factor(test_data$acc) test_data$pcc <- as.factor(test_data$pcc) test_data$educc <- as.factor(test_data$educc) test_data$educr <- as.factor(test_data$educr) # fit APC-I model APC_I <- APCI::apci(outcome = "inlfc", age = "acc", period = "pcc", cohort = "ccc", weight = "wt", data = test_data,dev.test=FALSE, print = TRUE, family = "gaussian") summary(APC_I) # plot hexagram apci.plot.hexagram(model=APC_I,age="acc",period="pcc",first_age = 20, first_period = 1940, interval = 5)
  • Maintainer: Jiahui Xu
  • License: GPL-2
  • Last published: 2024-09-02

Useful links