plot.residARpCRM function

Show diagnostic residual plots

Show diagnostic residual plots

It returns four plots for the quantile residuals: the time series plot of the residuals, the quantile-quantile plot, the histogram, and the ACF plot of the residuals.

## S3 method for class 'residARpCRM' plot(x, ...)

Arguments

  • x: An object inheriting from class residARpCRM obtained as an output of function residuals.
  • ...: Additional arguments.

Returns

A ggplot object.

Author(s)

Fernanda L. Schumacher, Katherine L. Valeriano, Victor H. Lachos, Christian E. Galarza, and Larissa A. Matos

See Also

ggplot, ARCensReg, ARtCensReg, residuals.ARpCRM, residuals.ARtpCRM

Examples

## Example 1: Generating data with normal innovations set.seed(93899) x = cbind(1, runif(300)) dat1 = rARCens(n=300, beta=c(1,-1), phi=c(.48,-.2), sig2=.5, x=x, cens='left', pcens=.05, innov="norm") # Fitting the model with normal innovations mod1 = ARCensReg(dat1$data$cc, dat1$data$lcl, dat1$data$ucl, dat1$data$y, x, p=2, tol=0.001) r1 = residuals(mod1) class(r1) plot(r1) # Fitting the model with Student-t innovations mod2 = ARtCensReg(dat1$data$cc, dat1$data$lcl, dat1$data$ucl, dat1$data$y, x, p=2, tol=0.001) r2 = residuals(mod2) plot(r2) ## Example 2: Generating heavy-tailed data set.seed(12341) x = cbind(1, runif(300)) dat2 = rARCens(n=300, beta=c(1,-1), phi=c(.48,-.2), sig2=.5, x=x, cens='left', pcens=.05, innov="t", nu=3) # Fitting the model with normal innovations mod3 = ARCensReg(dat2$data$cc, dat2$data$lcl, dat2$data$ucl, dat2$data$y, x, p=2, tol=0.001) r3 = residuals(mod3) plot(r3) # Fitting the model with Student-t innovations mod4 = ARtCensReg(dat2$data$cc, dat2$data$lcl, dat2$data$ucl, dat2$data$y, x, p=2, tol=0.001) r4 = residuals(mod4) plot(r4)
  • Maintainer: Fernanda L. Schumacher
  • License: GPL (>= 2)
  • Last published: 2023-08-29

Useful links