Analysis: Dunnett test
The function performs the Dunnett test
dunnett( trat, resp, control, model = "DIC", block = NA, column = NA, line = NA, alpha.t = 0.05, pointsize = 5, pointshape = 21, linesize = 1, labelsize = 4, textsize = 12, errorsize = 1, widthsize = 0.2, label = "Response", fontfamily = "sans" )
trat
: Numerical or complex vector with treatmentsresp
: Numerical vector containing the response of the experiment.control
: Treatment considered control (write identical to the name in the vector)model
: Experimental design (DIC, DBC or DQL)block
: Numerical or complex vector with blockscolumn
: Numerical or complex vector with columnsline
: Numerical or complex vector with linesalpha.t
: Significance level (default is 0.05)pointsize
: Point sizepointshape
: Shapelinesize
: Line sizelabelsize
: Label sizetextsize
: Font sizeerrorsize
: Errorbar sizewidthsize
: Width errorbarlabel
: Variable labelfontfamily
: font familyI return the Dunnett test for experiments in a completely randomized design, randomized blocks or Latin square.
Do not use the "-" symbol or space in treatment names
#==================================================== # complete randomized design #==================================================== data("pomegranate") with(pomegranate,dunnett(trat=trat,resp=WL,control="T1")) #==================================================== # randomized block design in factorial double #==================================================== library(AgroR) data(cloro) attach(cloro) respAd=c(268, 322, 275, 350, 320) a=FAT2DBC.ad(f1, f2, bloco, resp, respAd, ylab="Number of nodules", legend = "Stages",mcomp="sk") data=rbind(data.frame(trat=paste(f1,f2,sep = ""),bloco=bloco,resp=resp), data.frame(trat=c("Test","Test","Test","Test","Test"), bloco=unique(bloco),resp=respAd)) with(data,dunnett(trat = trat, resp = resp, control = "Test", block=bloco,model = "DBC"))
Useful links