Analysis: Linear regression graph in double factorial
Analysis: Linear regression graph in double factorial
Linear regression analysis for significant interaction of an experiment with two factors, one quantitative and one qualitative
polynomial2( fator1, resp, fator2, color =NA, grau =NA, ylab ="Response", xlab ="Independent", theme = theme_classic(), se =FALSE, point ="mean_sd", legend.title ="Treatments", posi ="top", textsize =12, ylim =NA, family ="sans", width.bar =NA, pointsize =3, linesize =0.8, separate = c("(\"","\")"), n =NA, DFres =NA, SSq =NA)
Arguments
fator1: Numeric or complex vector with factor 1 levels
resp: Numerical vector containing the response of the experiment.
fator2: Numeric or complex vector with factor 2 levels
color: Graph color (default is NA)
grau: Degree of the polynomial (1,2 or 3)
ylab: Dependent variable name (Accepts the expression() function)
xlab: Independent variable name (Accepts the expression() function)
theme: ggplot2 theme (default is theme_classic())
se: Adds confidence interval (default is FALSE)
point: Defines whether to plot all points ("all"), mean ("mean"), mean with standard deviation (default - "mean_sd") or mean with standard error ("mean_se").
legend.title: Title legend
posi: Legend position
textsize: Font size (default is 12)
ylim: y-axis scale
family: Font family (default is sans)
width.bar: width of the error bars of a regression graph.
pointsize: Point size (default is 4)
linesize: line size (Trendline and Error Bar)
separate: Separation between treatment and equation (default is c("("","")"))
n: Number of decimal places for regression equations
DFres: Residue freedom degrees
SSq: Sum of squares of the residue
Returns
Returns two or more linear, quadratic or cubic regression analyzes.