balliFit
Estimates likelihood and Bartlett correction factor using BALLI algorithm of each gene
balliFit(y_mat, x_mat, tecVar, intVar = 2, full = T, cfault = 0, miter = 200, conv = 1e-06)
y_mat
: numeric vector containing log-cpm values of each gene and each samplex_mat
: design matrix with samples in row and covariable(s) to be estimated in columntecVar
: numeric vector containing estimated technical variance of a gene of each sampleintVar
: numeric vector designating interest variable(s) which is(are) column number(s) of x_matfull
: logical value designating full model (TRUE) or reduced model (FALSE).cfault
: initial value of index showing whether converged (0) or not (1).miter
: maximum number of iteration to converge.conv
: threshold for convergencefollowing components are estimated - ll: log-likelihoods
beta: coefficients of interested variable(s)
alpha: coefficients of nuisance variable(s)
BCF: Bartlett's correction factor
cfault: index whether converged or not
expr <- data.frame(t(sapply(1:1000,function(x)rnbinom(20,mu=500,size=50)))) group <- c(rep("A",10),rep("B",10)) design <- model.matrix(~group, data = expr) dge <- DGEList(counts=expr, group=group) dge <- calcNormFactors(dge) tV <- tecVarEstim(dge,design) gtv <- tV$tecVar[1,] gdat <- data.frame(logcpm=tV$logcpm[1,],design,tecVar=gtv) gy <- matrix(unlist(gdat[,1]),ncol=1) gx <- matrix(unlist(gdat[,2:(ncol(gdat)-1)]),ncol=ncol(gdat)-2) balliFit(y_mat=gy,x_mat=gx,tecVar=gtv,intVar=2,full=TRUE,cfault=0,miter=200,conv=1e-6)
Useful links