Calculates log of the normalizing constant of G-Wishart distribution based on the Monte Carlo method, developed by Atay-Kayis and Massam (2005).
gnorm( adj, b =3, D = diag( ncol( adj )), iter =100)
Arguments
adj: adjacency matrix corresponding to the graph structure. It is an upper triangular matrix in which aij=1 if there is a link between notes i and j, otherwise aij=0.
b: degree of freedom for G-Wishart distribution, WG(b,D).
D: positive definite (p×p) "scale" matrix for G-Wishart distribution, WG(b,D). The default is an identity matrix.
iter: number of iteration for the Monte Carlo approximation.
Details
Log of the normalizing constant approximation using Monte Carlo method for a G-Wishart distribution, K∼WG(b,D), with density:
Pr(K)=I(b,D)1∣K∣(b−2)/2exp{−21\mboxtrace(K×D)}.
Returns
Log of the normalizing constant of G-Wishart distribution.
References
Atay-Kayis, A. and Massam, H. (2005). A monte carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models, Biometrika, 92(2):317-335, tools:::Rd_expr_doi("10.1093/biomet/92.2.317")
Mohammadi, R., Massam, H. and Letac, G. (2023). Accelerating Bayesian Structure Learning in Sparse Gaussian Graphical Models, Journal of the American Statistical Association, tools:::Rd_expr_doi("10.1080/01621459.2021.1996377")
Uhler, C., et al (2018) Exact formulas for the normalizing constants of Wishart distributions for graphical models, The Annals of Statistics 46(1):90-118, tools:::Rd_expr_doi("10.1214/17-AOS1543")
## Not run:# adj: adjacency matrix of graph with 3 nodes and 2 linksadj <- matrix( c(0,0,1,0,0,1,0,0,0),3,3, byrow =TRUE)gnorm( adj, b =3, D = diag(3))## End(Not run)