Provides the estimated posterior link probabilities for all possible links in the graph.
plinks( bdgraph.obj, round =2, burnin =NULL)
Arguments
bdgraph.obj: object of S3 class "bdgraph", from function bdgraph. It also can be an object of S3 class "ssgraph", from the function ssgraph::ssgraph() of R package ssgraph::ssgraph().
round: value for rounding all probabilities to the specified number of decimal places.
burnin: number of burn-in iteration to scape.
Returns
An upper triangular matrix which corresponds the estimated posterior probabilities for all possible links.
References
Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R Package for Bayesian Structure Learning in Graphical Models, Journal of Statistical Software, 89(3):1-30, tools:::Rd_expr_doi("10.18637/jss.v089.i03")
Mohammadi, A. and Wit, E. C. (2015). Bayesian Structure Learning in Sparse Gaussian Graphical Models, Bayesian Analysis, 10(1):109-138, tools:::Rd_expr_doi("10.1214/14-BA889")
Mohammadi, R., Massam, H. and Letac, G. (2023). Accelerating Bayesian Structure Learning in Sparse Gaussian Graphical Models, Journal of the American Statistical Association, tools:::Rd_expr_doi("10.1080/01621459.2021.1996377")
Dobra, A. and Mohammadi, R. (2018). Loglinear Model Selection and Human Mobility, Annals of Applied Statistics, 12(2):815-845, tools:::Rd_expr_doi("10.1214/18-AOAS1164")
Mohammadi, A. et al (2017). Bayesian modelling of Dupuytren disease by using Gaussian copula graphical models, Journal of the Royal Statistical Society: Series C, 66(3):629-645, tools:::Rd_expr_doi("10.1111/rssc.12171")
## Not run:# Generating multivariate normal data from a 'circle' graphdata.sim <- bdgraph.sim( n =70, p =6, graph ="circle", vis =TRUE)bdgraph.obj <- bdgraph( data = data.sim, iter =10000)plinks( bdgraph.obj, round =2)## End(Not run)