Generates random matrices, distributed according to the Wishart distribution with parameters b and D, W(b,D).
rwish( n =1, p =2, b =3, D = diag( p ))
Arguments
n: number of samples required.
p: number of variables (nodes).
b: degree of freedom for Wishart distribution, W(b,D).
D: positive definite (p×p) "scale" matrix for Wishart distribution, W(b,D). The default is an identity matrix.
Details
Sampling from Wishart distribution, K∼W(b,D), with density:
Pr(K)∝∣K∣(b−2)/2exp{−21\mboxtrace(K×D)},
which b>2 is the degree of freedom and D is a symmetric positive definite matrix.
Returns
A numeric array, say A, of dimension (p×p×n), where each A[,,i] is a positive definite matrix, a realization of the Wishart distribution W(b,D). Note, for the case n=1, the output is a matrix.
References
Lenkoski, A. (2013). A direct sampler for G-Wishart variates, Stat, 2:119-128, tools:::Rd_expr_doi("10.1002/sta4.23")
Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R Package for Bayesian Structure Learning in Graphical Models, Journal of Statistical Software, 89(3):1-30, tools:::Rd_expr_doi("10.18637/jss.v089.i03")