Compute Posterior Distributions from Graph Search Results
Compute Posterior Distributions from Graph Search Results
The bma_posterior function samples posterior distributions of graph parameters (e.g., partial correlations or precision matrices) based on the graph structures sampled during a Bayesian graph search performed by ggm_search.
bma_posterior(object, param ="pcor", iter =5000, progress =TRUE)
Arguments
object: A ggm_search object
param: Compute BMA on either partial correlations "pcor" (default) or on precision matrix "Theta".
iter: Number of samples to be drawn, defaults to 5,000
progress: Show progress bar, defaults to TRUE
Returns
A list containing posterior samples and the Bayesian Model Averaged parameter estimates.
Details
This function incorporates uncertainty in both graph structure and parameter estimation, providing Bayesian Model Averaged (BMA) parameter estimates.
Use bma_posterior when detailed posterior inference on graph parameters is needed, or to refine results obtained from ggm_search.