Compute Regression Parameters for estimate Objects
Compute Regression Parameters for estimate Objects
There is a direct correspondence between the inverse covariance matrix and multiple regression \insertCite kwan2014regression,Stephens1998BGGM. This readily allows for converting the GGM parameters to regression coefficients. All data types are supported.
## S3 method for class 'estimate'coef(object, iter =NULL, progress =TRUE,...)
Arguments
object: An Object of class estimate
iter: Number of iterations (posterior samples; defaults to the number in the object).
progress: Logical. Should a progress bar be included (defaults to TRUE) ?
...: Currently ignored.
Returns
An object of class coef, containting two lists.
betas A list of length p, each containing a p - 1 by iter matrix of posterior samples
object An object of class estimate (the fitted model).
Examples
# note: iter = 250 for demonstrative purposes############################ example 1: binary ############################# dataY = matrix( rbinom(100,1,.5), ncol=4)# fit modelfit <- estimate(Y, type ="binary", iter =250, progress =TRUE)# summarize the partial correlationsreg <- coef(fit, progress =FALSE)# summarysumm <- summary(reg)
summ