constrained_posterior function

Constrained Posterior Distribution

Constrained Posterior Distribution

Compute the posterior distribution with off-diagonal elements of the precision matrix constrained to zero.

constrained_posterior( object, adj, method = "direct", iter = 5000, progress = TRUE, ... )

Arguments

  • object: An object of class estimate or explore
  • adj: A p by p adjacency matrix. The zero entries denote the elements that should be constrained to zero.
  • method: Character string. Which method should be used ? Defaults to the "direct sampler" (i.e., method = "direct") described in \insertCite @page 122, section 2.4, @lenkoski2013direct;textualBGGM. The other option is a Metropolis-Hastings algorithm (MH). See details.
  • iter: Number of iterations (posterior samples; defaults to 5000).
  • progress: Logical. Should a progress bar be included (defaults to TRUE) ?
  • ...: Currently ignored.

Returns

An object of class contrained, including

  • precision_mean The posterior mean for the precision matrix.

  • pcor_mean The posterior mean for the precision matrix.

  • precision_samps A 3d array of dimension p by p by iter

    including the sampled precision matrices.

  • pcor_samps A 3d array of dimension p by p by iter

    including sampled partial correlations matrices.

Examples

# data Y <- bfi[,1:10] # sample posterior fit <- estimate(Y, iter = 100) # select graph sel <- select(fit) # constrained posterior post <- constrained_posterior(object = fit, adj = sel$adj, iter = 100, progress = FALSE)

References

\insertAllCited

  • Maintainer: Philippe Rast
  • License: GPL-2
  • Last published: 2024-12-22