Compute Correlations from the Partial Correlations
Compute Correlations from the Partial Correlations
Convert the partial correlation matrices into correlation matrices. To our knowledge, this is the only Bayesian implementation in R that can estiamte Pearson's, tetrachoric (binary), polychoric (ordinal with more than two cateogries), and rank based correlation coefficients.
pcor_to_cor(object, iter =NULL)
Arguments
object: An object of class estimate or explore
iter: numeric. How many iterations (i.e., posterior samples) should be used ? The default uses all of the samples, but note that this can take a long time with large matrices.
Returns
R An array including the correlation matrices (of dimensions p by p by iter)
R_mean Posterior mean of the correlations (of dimensions p by p)
Note
The 'default' prior distributions are specified for partial correlations in particular. This means that the implied prior distribution will not be the same for the correlations.
Examples
# note: iter = 250 for demonstrative purposes# dataY <- BGGM::ptsd
############################### continuous ################################# estimate the modelfit <- estimate(Y, iter =250, progress =FALSE)# compute correlationscors <- pcor_to_cor(fit)############################### ordinal ################################### first level must be 1 !Y <- Y +1# estimate the modelfit <- estimate(Y, type ="ordinal", iter =250, progress =FALSE)# compute correlationscors <- pcor_to_cor(fit)################################ mixed ################################ rank based correlations# estimate the modelfit <- estimate(Y, type ="mixed", iter =250, progress =FALSE)# compute correlationscors <- pcor_to_cor(fit)