pcor_to_cor function

Compute Correlations from the Partial Correlations

Compute Correlations from the Partial Correlations

Convert the partial correlation matrices into correlation matrices. To our knowledge, this is the only Bayesian implementation in R that can estiamte Pearson's, tetrachoric (binary), polychoric (ordinal with more than two cateogries), and rank based correlation coefficients.

pcor_to_cor(object, iter = NULL)

Arguments

  • object: An object of class estimate or explore
  • iter: numeric. How many iterations (i.e., posterior samples) should be used ? The default uses all of the samples, but note that this can take a long time with large matrices.

Returns

  • R An array including the correlation matrices (of dimensions p by p by iter)
  • R_mean Posterior mean of the correlations (of dimensions p by p)

Note

The 'default' prior distributions are specified for partial correlations in particular. This means that the implied prior distribution will not be the same for the correlations.

Examples

# note: iter = 250 for demonstrative purposes # data Y <- BGGM::ptsd ######################### ###### continuous ####### ######################### # estimate the model fit <- estimate(Y, iter = 250, progress = FALSE) # compute correlations cors <- pcor_to_cor(fit) ######################### ###### ordinal ######### ######################### # first level must be 1 ! Y <- Y + 1 # estimate the model fit <- estimate(Y, type = "ordinal", iter = 250, progress = FALSE) # compute correlations cors <- pcor_to_cor(fit) ######################### ####### mixed ###### ######################### # rank based correlations # estimate the model fit <- estimate(Y, type = "mixed", iter = 250, progress = FALSE) # compute correlations cors <- pcor_to_cor(fit)
  • Maintainer: Philippe Rast
  • License: GPL-2
  • Last published: 2024-12-22