maxLikelihood function

Maximum likelihood optimization

Maximum likelihood optimization

maxLikelihood( data, model, init = NULL, maxit = 500, method = "L-BFGS-B", hess = T, link, unlink )

Arguments

  • data: The angular data to be used for inference

  • model: A list made of

    • likelihood: The likelihood function, see dpairbeta

       for a template
      
    • npar: The length of the parameter vector

  • init: NULL or a real vector of size model$npar giving the initial values for link{par}.

  • maxit: maximum number of iterations to be performed by function optim

  • method: The method to be used by optim

  • hess: logical: should an approximation of the hessian be performed ?

  • link: the link function from the natural marginal parameter spaces to the real line.

  • unlink: the inverse link function. If x is any real number, then unlink(x) should be in the admissible range for the likelihood function and the prior function.

Returns

The list returned by optim and the AIC and BIC criteria

  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-21

Useful links