Posterior predictive density on the simplex, for three-dimensional extreme value models.
Posterior predictive density on the simplex, for three-dimensional extreme value models.
Computes an approximation of the posterior mean of a parameter functional, based on a posterior parameters sample.
posteriorMean( post.sample, FUN =function(par,...){ par
}, from =NULL, to =NULL, thin =50, displ =TRUE,...)
Arguments
post.sample: A posterior sample as returned by posteriorMCMC
FUN: a parameter functional returning a vector.
from: Integer or NULL. If NULL, the default value is used. Otherwise, should be greater than post.sample$Nbin. Indicates the index where the averaging process should start. Default to post.sample$Nbin +1
to: Integer or NULL. If NULL, the default value is used. Otherwise, must be lower than Nsim+1. Indicates where the averaging process should stop. Default to post.sample$Nsim.
thin: Thinning interval.
displ: logical. Should a plot be produced ?
...: Additional parameters to be passed to FUN.
Returns
A list made of
values: A matrix : each column is the result of FUN applied to a parameter from the posterior sample.
est.mean: The posterior mean
est.sd: The posterior standard deviation
Details
Only a sub-sample is used: one out of thin parameters is used (thinning). Further, only the parameters produced between time from and time to (included) are kept.