posteriorMean function

Posterior predictive density on the simplex, for three-dimensional extreme value models.

Posterior predictive density on the simplex, for three-dimensional extreme value models.

Computes an approximation of the posterior mean of a parameter functional, based on a posterior parameters sample.

posteriorMean( post.sample, FUN = function(par, ...) { par }, from = NULL, to = NULL, thin = 50, displ = TRUE, ... )

Arguments

  • post.sample: A posterior sample as returned by posteriorMCMC
  • FUN: a parameter functional returning a vector.
  • from: Integer or NULL. If NULL, the default value is used. Otherwise, should be greater than post.sample$Nbin. Indicates the index where the averaging process should start. Default to post.sample$Nbin +1
  • to: Integer or NULL. If NULL, the default value is used. Otherwise, must be lower than Nsim+1. Indicates where the averaging process should stop. Default to post.sample$Nsim.
  • thin: Thinning interval.
  • displ: logical. Should a plot be produced ?
  • ...: Additional parameters to be passed to FUN.

Returns

A list made of

  • values: A matrix : each column is the result of FUN applied to a parameter from the posterior sample.
  • est.mean: The posterior mean
  • est.sd: The posterior standard deviation

Details

Only a sub-sample is used: one out of thin parameters is used (thinning). Further, only the parameters produced between time from and time to (included) are kept.

See Also

posteriorMCMC.

  • Maintainer: Leo Belzile
  • License: GPL (>= 2)
  • Last published: 2023-04-21

Useful links