BMTchangepars function

The BMT Distribution Parameter Conversion.

The BMT Distribution Parameter Conversion.

Parameter conversion for different parameterizations for the BMT distribution, with p3 and p4 tails weights (κl\kappa_l

and κr\kappa_r) or asymmetry-steepness parameters (ζ\zeta and ξ\xi) and p1 and p2 domain (minimum and maximum) or location-scale (mean and standard deviation) parameters.

BMTchangepars( p3, p4, type.p.3.4 = "t w", p1 = NULL, p2 = NULL, type.p.1.2 = NULL )

Arguments

  • p3, p4: tails weights (κl\kappa_l and κr\kappa_r) or asymmetry-steepness (ζ\zeta and ξ\xi) parameters of the BMT distribution.
  • type.p.3.4: type of parametrization associated to p3 and p4. "t w" means tails weights parametrization (default) and "a-s" means asymmetry-steepness parametrization.
  • p1, p2: domain (minimum and maximum) or location-scale (mean and standard deviation) parameters of the BMT distribution.
  • type.p.1.2: type of parametrization associated to p1 and p2. "c-d" means domain parametrization (default) and "l-s" means location-scale parametrization.

Returns

BMTchangepars reparametrize p3, p4, p1, p2 according to the alternative parameterizations from the given type.p.3.4 and type.p.1.2. BMTchangepars returns a list with the alternative arguments to those received.

The arguments are recycled to the length of the result. Only the first elements of type.p.3.4 and type.p.1.2 are used.

If type.p.3.4 == "t w", p3 < 0 and p3 > 1 are errors and return NaN.

If type.p.3.4 == "a-s", p3 < -1 and p3 > 1 are errors and return NaN.

p4 < 0 and p4 > 1 are errors and return NaN.

If type.p.1.2 == "c-d", p1 >= p2 is an error and returns NaN.

If type.p.1.2 == "l-s", p2 <= 0 is an error and returns NaN.

Details

The BMT coefficient of asymmetry 1<ζ<1-1 < \zeta < 1 is

κrκl \kappa_r - \kappa_l

The BMT coefficient of steepness 0<ξ<10 < \xi < 1 is

(κr+κlκrκl)/(2(1κrκl)) (\kappa_r +\kappa_l - |\kappa_r - \kappa_l|) / (2 (1 - |\kappa_r - \kappa_l|))

for κrκl<1|\kappa_r - \kappa_l| < 1.

The BMT distribution has mean c("(dc)BMTmean(kappal,kappar)+\n( d - c ) BMTmean(\\kappa_l, \\kappa_r) + \n", "c c") and standard deviation (dc)BMTsd(κl,κr)( d - c ) BMTsd(\kappa_l, \kappa_r)

From these equations, we can go back and forth with each parameterization.

Examples

# BMT on [0,1] with left tail weight equal to 0.25 and # right tail weight equal to 0.75 parameters <- BMTchangepars(0.25, 0.75, "t w") parameters # Parameters of the BMT in the asymmetry-steepness parametrization # BMT with mean equal to 0, standard deviation equal to 1, # asymmetry coefficient equal to 0.5 and # steepness coefficient equal to 0.75 parameters <- BMTchangepars(0.5, 0.5, "a-s", 0, 1, "l-s") parameters # Parameters of the BMT in the tail weight and domain parametrization

References

Torres-Jimenez, C. J. (2018), The BMT Item Response Theory model: A new skewed distribution family with bounded domain and an IRT model based on it, PhD thesis, Doctorado en ciencias - Estadistica, Universidad Nacional de Colombia, Sede Bogota.

See Also

BMT for the BMT density, distribution, quantile function and random deviates.

Author(s)

Camilo Jose Torres-Jimenez [aut,cre] cjtorresj@unal.edu.co

and Alvaro Mauricio Montenegro Diaz [ths]

  • Maintainer: Camilo Jose Torres-Jimenez
  • License: GPL (>= 2)
  • Last published: 2025-04-17

Useful links