BMTAR0.1.1 package

Bayesian Approach for MTAR Models with Missing Data

autoplot.tsregime

tsregime object ggplot for the outputs on the function tsregime

auto_mtar

Estimation of a MTAR model for some data

autoplot

Create a complete ggplot appropriate to a particular data type

autoplot.regime_missing

regime_missing object ggplot for the outputs on the function outputs m...

autoplot.regime_model

regime_model object ggplot for the outputs on the function outputs mta...

diagnostic_mtar

Residual diagnosis for model MTAR

dmnormB

Multivariate normal density using Brobdingnag class

dwishartB

Wishart density using Brobdingnag class

lists_ind

Create indicator vector for the regimen of each observation

mtaregime

Object class ‘regime’ creation

mtarinipars

Organization and check model specification

mtarmissing

Estimation of missing values of observed, covariate and threshold proc...

mtarNAIC

Compute NAIC of a MTAR model

mtarns

Estimation of non-structural parameters for MTAR model

mtarnumreg

Estimation of the number of regimes in a MTAR model

mtarsim

Multivariate threshold autoregressive process simulation

mtarstr

Estimation of structural parameters of MTAR model

print

print an object appropriate to a particular data type

print.regime_missing

Print estimates of a regime_missing object of the function output mtar...

print.regime_model

print regime_model object for the function outputs mtarns and mtastr

print.regime_number

print regime_number object for the function outputs mtarnumreg

print.tsregime

Print tsregime object

prodB

Function to make product of elements of a list

repM

Function to create list of matrix objects

tsregime

Creation of class ‘tsregime’ for some data

Implements parameter estimation using a Bayesian approach for Multivariate Threshold Autoregressive (MTAR) models with missing data using Markov Chain Monte Carlo methods. Performs the simulation of MTAR processes (mtarsim()), estimation of matrix parameters and the threshold values (mtarns()), identification of the autoregressive orders using Bayesian variable selection (mtarstr()), identification of the number of regimes using Metropolised Carlin and Chib (mtarnumreg()) and estimate missing data, coefficients and covariance matrices conditional on the autoregressive orders, the threshold values and the number of regimes (mtarmissing()). Calderon and Nieto (2017) <doi:10.1080/03610926.2014.990758>.

  • Maintainer: Andrey Duvan Rincon Torres
  • License: GPL (>= 2)
  • Last published: 2021-01-19