BVAR1.0.5 package

Hierarchical Bayesian Vector Autoregression

Estimation of hierarchical Bayesian vector autoregressive models following Kuschnig & Vashold (2021) <doi:10.18637/jss.v100.i14>. Implements hierarchical prior selection for conjugate priors in the fashion of Giannone, Lenza & Primiceri (2015) <doi:10.1162/REST_a_00483>. Functions to compute and identify impulse responses, calculate forecasts, forecast error variance decompositions and scenarios are available. Several methods to print, plot and summarise results facilitate analysis.

  • Maintainer: Nikolas Kuschnig
  • License: GPL-3 | file LICENSE
  • Last published: 2024-02-16