Cross-factorial Moment for the Basu-Dhar Bivariate Geometric Distribution
Cross-factorial Moment for the Basu-Dhar Bivariate Geometric Distribution
This function computes the cross-factorial moment for the Basu-Dhar bivariate geometric distribution assuming arbitrary parameter values.
Source
cfbivgeo is calculated directly from the definition.
cfbivgeo(theta)
Arguments
theta: vector (of length 3) containing values of the parameters θ1,θ2 and θ3 of the Basu-Dhar bivariate Geometric distribution. For real data applications, use the maximum likelihood estimates or Bayesian estimates to get the cross-factorial moment.
Returns
cfbivgeo computes the cross-factorial moment for the Basu-Dhar bivariate geometric distribution for arbitrary parameter values.
Invalid arguments will return an error message.
Details
The cross-factorial moment between X and Y, assuming the Basu-Dhar bivariate geometric distribution, is given by,
Basu, A. P., & Dhar, S. K. (1995). Bivariate geometric distribution. Journal of Applied Statistical Science, 2 , 1, 33-44.
Li, J., & Dhar, S. K. (2013). Modeling with bivariate geometric distributions. Communications in Statistics-Theory and Methods, 42, 2 , 252-266.
Achcar, J. A., Davarzani, N., & Souza, R. M. (2016). Basu–Dhar bivariate geometric distribution in the presence of covariates and censored data: a Bayesian approach. Journal of Applied Statistics, 43 , 9, 1636-1648.
de Oliveira, R. P., & Achcar, J. A. (2018). Basu-Dhar's bivariate geometric distribution in presence of censored data and covariates: some computational aspects. Electronic Journal of Applied Statistical Analysis, 11 , 1, 108-136.
de Oliveira, R. P., Achcar, J. A., Peralta, D., & Mazucheli, J. (2018). Discrete and continuous bivariate lifetime models in presence of cure rate: a comparative study under Bayesian approach. Journal of Applied Statistics, 1-19.