Moments Estimator for the Basu-Dhar Bivariate Geometric Distribution
Moments Estimator for the Basu-Dhar Bivariate Geometric Distribution
This function computes the estimators based on the method of the moments for each parameter of the Basu-Dhar bivariate geometric distribution.
Source
mombivgeo is calculated directly from the definition.
mombivgeo(x, y)
Arguments
x: matrix or vector containing the data. If x is a matrix then it is considered as x the first column and y the second column (y argument need be setted to NULL). Additional columns and y are ignored.
y: vector containing the data of y. It is used only if x is also a vector. Vectors x and y should be of equal length.
Returns
mombivgeo gives the values of the moments estimator.
Invalid arguments will return an error message.
Details
The moments estimators of θ1,θ2,θ3 of the Basu-Dhar bivariate geometric distribution are given by:
# Generate the data set:set.seed(123)x1 <- rbivgeo1(n =1000, theta = c(0.5,0.5,0.7))set.seed(123)x2 <- rbivgeo2(n =1000, theta = c(0.5,0.5,0.7))# Compute de moment estimator by:mombivgeo(x = x1, y =NULL)# For data set x1# [,1]# theta1 0.5053127# theta2 0.5151873# theta3 0.6640406mombivgeo(x = x2, y =NULL)# For data set x2# [,1]# theta1 0.4922327# theta2 0.5001577# theta3 0.6993893
References
Basu, A. P., & Dhar, S. K. (1995). Bivariate geometric distribution. Journal of Applied Statistical Science, 2 , 1, 33-44.
Li, J., & Dhar, S. K. (2013). Modeling with bivariate geometric distributions. Communications in Statistics-Theory and Methods, 42, 2 , 252-266.
Achcar, J. A., Davarzani, N., & Souza, R. M. (2016). Basu–Dhar bivariate geometric distribution in the presence of covariates and censored data: a Bayesian approach. Journal of Applied Statistics, 43 , 9, 1636-1648.
de Oliveira, R. P., & Achcar, J. A. (2018). Basu-Dhar's bivariate geometric distribution in presence of censored data and covariates: some computational aspects. Electronic Journal of Applied Statistical Analysis, 11 , 1, 108-136.
See Also
Geometric for the univariate geometric distribution.