Joint Cumulative Function for the Basu-Dhar Bivariate Geometric Distribution
Joint Cumulative Function for the Basu-Dhar Bivariate Geometric Distribution
This function computes the joint cumulative function of the Basu-Dhar bivariate geometric distribution assuming arbitrary parameter values.
Source
pbivgeo is calculated directly from the definition.
pbivgeo(x, y, theta, lower.tail =TRUE)
Arguments
x: matrix or vector containing the data. If x is a matrix then it is considered as x the first column and y the second column (y argument need be setted to NULL). Additional columns and y are ignored.
y: vector containing the data of y. It is used only if x is also a vector. Vectors x and y should be of equal length.
theta: vector (of length 3) containing values of the parameters θ1,θ2 and θ3 of the Basu-Dhar bivariate Geometric distribution. The parameters are restricted to 0<θi<1,i=1,2 and 0<θ3≤1.
lower.tail: logical; If TRUE (default), probabilities are P(X≤x,Y≤y) otherwise P(X>x,Y>y).
Returns
pbivgeo gives the values of the cumulative function.
Invalid arguments will return an error message.
Details
The joint cumulative function for a random vector (X, Y) following a Basu-Dhar bivariate geometric distribution could be written as:
# If x and y are integer numbers:pbivgeo(x =1, y =2, theta = c(0.2,0.4,0.7), lower.tail =TRUE)# [1] 0.79728# If x is a matrix:matr <- matrix(c(1,2,3,5), ncol =2)pbivgeo(x = matr, y =NULL, theta = c(0.2,0.4,0.7), lower.tail =TRUE)# [1] 0.8424384 0.9787478# If lower.tail = FALSE:pbivgeo(x =1, y =2, theta = c(0.2,0.4,0.7), lower.tail =FALSE)# [1] 0.01568matr <- matrix(c(1,2,3,5), ncol =2)pbivgeo(x = matr, y =NULL, theta = c(0.9,0.4,0.7), lower.tail =FALSE)# [1] 0.01975680 0.00139404
References
Basu, A. P., & Dhar, S. K. (1995). Bivariate geometric distribution. Journal of Applied Statistical Science, 2 , 1, 33-44.
Li, J., & Dhar, S. K. (2013). Modeling with bivariate geometric distributions. Communications in Statistics-Theory and Methods, 42, 2 , 252-266.
Achcar, J. A., Davarzani, N., & Souza, R. M. (2016). Basu–Dhar bivariate geometric distribution in the presence of covariates and censored data: a Bayesian approach. Journal of Applied Statistics, 43 , 9, 1636-1648.
de Oliveira, R. P., & Achcar, J. A. (2018). Basu-Dhar's bivariate geometric distribution in presence of censored data and covariates: some computational aspects. Electronic Journal of Applied Statistical Analysis, 11 , 1, 108-136.
See Also
Geometric for the univariate geometric distribution.