Generates Random Deviates from the Basu-Dhar Bivariate Geometric Distribution
Generates Random Deviates from the Basu-Dhar Bivariate Geometric Distribution
This function generates random values from the Basu-Dhar bivariate geometric distribution assuming arbitrary parameter values.
Source
rbivgeo1 generates random deviates using the inverse transformation method. Returns a matrix that the first column corresponds to X generated random values and the second column corresponds to Y generated random values.
rbivgeo2 generates random deviates using the shock model. Returns a matrix that the first column corresponds to X generated random values and the second column corresponds to Y generated random values. See Marshall and Olkin (1967) for more details.
rbivgeo1(n, theta)rbivgeo2(n, theta)
Arguments
n: number of observations. If length(n) >1, the length is taken to be the number required.
theta: vector (of length 3) containing values of the parameters θ1,θ2 and θ3 of the Basu-Dhar bivariate Geometric distribution. The parameters are restricted to 0<θi<1,i=1,2 and 0<θ3≤1.
Returns
rbivgeo1 and rbivgeo2 generate random deviates from the Bash-Dhar bivariate geometric distribution. The length of the result is determined by n, and is the maximum of the lengths of the numerical arguments for the other functions.
Invalid arguments will return an error message.
Details
The conditional distribution of X given Y is given by:
Marshall, A. W., & Olkin, I. (1967). A multivariate exponential distribution. Journal of the American Statistical Association, 62 , 317, 30-44.
Basu, A. P., & Dhar, S. K. (1995). Bivariate geometric distribution. Journal of Applied Statistical Science, 2 , 1, 33-44.
Li, J., & Dhar, S. K. (2013). Modeling with bivariate geometric distributions. Communications in Statistics-Theory and Methods, 42 , 2, 252-266.
Achcar, J. A., Davarzani, N., & Souza, R. M. (2016). Basu–Dhar bivariate geometric distribution in the presence of covariates and censored data: a Bayesian approach. Journal of Applied Statistics, 43 , 9, 1636-1648.
de Oliveira, R. P., & Achcar, J. A. (2018). Basu-Dhar's bivariate geometric distribution in presence of censored data and covariates: some computational aspects. Electronic Journal of Applied Statistical Analysis, 11 , 1, 108-136.
See Also
Geometric for the univariate geometric distribution.