Boom0.9.15 package

Bayesian Object Oriented Modeling

add.segments

Function to add horizontal line segments to an existing plot

ar1.coefficient.prior

Normal prior for an AR1 coefficient

beta.prior

Beta prior for a binomial proportion

Boom-package

Boom

boxplot.mcmc.matrix

Plot the distribution of a matrix

boxplot.true

Compare Boxplots to True Values

check.data

Checking data formats

check

Check MCMC Output

circles

Draw Circles

compare.den

Compare several density estimates.

compare.dynamic.distributions

Compare Dynamic Distributions

compare.many.densities

Compare several density estimates.

compare.many.ts

Compares several density estimates.

compare.vector.distributions

Boxplots to compare distributions of vectors

diff.double.model

DiffDoubleModel

dirichlet-distribution

The Dirichlet Distribution

dirichlet.prior

Dirichlet prior for a multinomial distribution

discrete-uniform-prior

Discrete prior distributions

dmvn

Multivariate Normal Density

double.model

Prior distributions for a real valued scalar

external.legend

Add an external legend to an array of plots.

gamma.prior

Gamma prior distribution

generate_factor_data

Generate a data frame of all factor data

histabunch

A Bunch of Histograms

inverse-wishart

Inverse Wishart Distribution

invgamma

Inverse Gamma Distribution

is.even

Check whether a number is even or odd.

lmgamma

Log Multivariate Gamma Function

log.integrated.gaussian.likelihood

Log Integrated Gaussian Likelihood

lognormal.prior

Lognormal Prior Distribution

markov.prior

Prior for a Markov chain

match_data_frame

MatchDataFrame

mscan

Scan a Matrix

mvn.diagonal.prior

diagonal MVN prior

mvn.independent.sigma.prior

Independence prior for the MVN

mvn.prior

Multivariate normal prior

MvnGivenSigmaMatrixPrior

Conditional Multivaraite Normal Prior Given Variance

normal.inverse.gamma.prior

Normal inverse gamma prior

normal.inverse.wishart.prior

Normal inverse Wishart prior

normal.prior

Normal (scalar Gaussian) prior distribution

pairs.density

Pairs plot for posterior distributions.

plot.density.contours

Contour plot of a bivariate density.

plot.dynamic.distribution

Plots the pointwise evolution of a distribution over an index set.

plot.macf

Plots individual autocorrelation functions for many-valued time series

plot.many.ts

Multiple time series plots

regression.coefficient.conjugate.prior

Regression Coefficient Conjugate Prior

replist

Repeated Lists of Objects

rmvn

Multivariate Normal Simulation

rvectorfunction

RVectorFunction

scaled.matrix.normal.prior

Scaled Matrix-Normal Prior

sd.prior

Prior for a standard deviation or variance

sufstat

Sufficient Statistics

suggest.burn.log.likelihood

Suggest MCMC Burn-in from Log Likelihood

thin.matrix

Thin a Matrix

thin

Thin the rows of a matrix

timeseries.boxplot

Time Series Boxplots

ToString

Convert to Character String

traceproduct

Trace of the Product of Two Matrices

uniform.prior

Uniform prior distribution

wishart

Wishart Distribution

A C++ library for Bayesian modeling, with an emphasis on Markov chain Monte Carlo. Although boom contains a few R utilities (mainly plotting functions), its primary purpose is to install the BOOM C++ library on your system so that other packages can link against it.

  • Maintainer: Steven L. Scott
  • License: LGPL-2.1 | file LICENSE
  • Last published: 2024-02-03