Parametric bootstrap
Parametric bootstrap for bivariate normally distributed data
CAMANboot(obs1, obs2, var1, var2, lambda11, lambda12, prob1, lambda21, lambda22, prob2, rep, data,numiter=10000,acc=1.e-7)
obs1
: the first column of the observations
obs2
: the second column of the observations
data
: a data frame
var1
: Variance of the first column of the observations(except meta-analysis)
var2
: Variance of the second column of the observations (except meta-analysis)
lambda11
: first means of the first column of the observations
lambda12
: first means of the second column of the observations
prob1
: first mixing weight
lambda21
: second means of the first column of the observations
lambda22
: second means of the second column of the observations
prob2
: second mixing weight
numiter
: parameter to control the maximal number of iterations in the VEM and EM loops. Default is 5000.
acc
: convergence criterion. Default is 1.e-7
rep
: number of repetitions
for bivariate normally distributed data data(CT) library(mvtnorm) hom1<-c(3.142442) hom2<-c(-1.842393) p1<-c(1) start1<-c(2.961984,3.226141) start2<-c(-2.578836, -1.500823) pvem<-c(0.317,0.683) CAMANboot(obs1=logitTPR, obs2=logitTNR, var1=varlogitTPR, var2=varlogitTNR, lambda11=hom1, lambda12=hom2, prob1=p1, lambda21=start1, lambda22=start2, prob2=pvem,rep=3,data=CT)
Useful links