boot function

Parametric bootstrap

Parametric bootstrap

Parametric bootstrap for bivariate normally distributed data

CAMANboot(obs1, obs2, var1, var2, lambda11, lambda12, prob1, lambda21, lambda22, prob2, rep, data,numiter=10000,acc=1.e-7)

Arguments

  • obs1: the first column of the observations

  • obs2: the second column of the observations

  • data: a data frame

  • var1: Variance of the first column of the observations(except meta-analysis)

  • var2: Variance of the second column of the observations (except meta-analysis)

  • lambda11: first means of the first column of the observations

  • lambda12: first means of the second column of the observations

  • prob1: first mixing weight

  • lambda21: second means of the first column of the observations

  • lambda22: second means of the second column of the observations

  • prob2: second mixing weight

  • numiter: parameter to control the maximal number of iterations in the VEM and EM loops. Default is 5000.

  • acc: convergence criterion. Default is 1.e-7

  • rep: number of repetitions

Examples

for bivariate normally distributed data data(CT) library(mvtnorm) hom1<-c(3.142442) hom2<-c(-1.842393) p1<-c(1) start1<-c(2.961984,3.226141) start2<-c(-2.578836, -1.500823) pvem<-c(0.317,0.683) CAMANboot(obs1=logitTPR, obs2=logitTNR, var1=varlogitTPR, var2=varlogitTNR, lambda11=hom1, lambda12=hom2, prob1=p1, lambda21=start1, lambda22=start2, prob2=pvem,rep=3,data=CT)
  • Maintainer: Philipp Doebler
  • License: GPL (>= 2)
  • Last published: 2023-09-22

Useful links