Function to obtain naive standard error estimates for the parameter estimates of the get_estimates function, under the GLM or AFT setting for the analysis of a normally-distributed or censored time-to-event primary outcome.
naive_se(setting ="GLM", Y =NULL, X =NULL, K =NULL, L =NULL, C =NULL)
Arguments
setting: String with value "GLM" or "AFT" indicating whether standard error estimates are obtained for a normally-distributed ("GLM") or censored time-to-event ("AFT") primary outcome Y.
Y: Numeric input vector for the primary outcome.
X: Numeric input vector for the exposure variable.
K: Numeric input vector for the intermediate outcome.
L: Numeric input vector for the observed confounding factor.
C: Numeric input vector for the censoring indicator under the AFT setting (must be coded 0 = censored, 1 = uncensored).
Returns
Returns a vector with the naive standard error estimates of the parameter estimates.
Details
Under the GLM setting for the analysis of a normally-distributed primary outcome Y, naive standard error estimates are obtained for the estimates of the parameters α0,α1,α2,α3,α4,\alphaXY
using the lm function, without accounting for the additional variability due to the 2-stage approach.
Under the AFT setting for the analysis of a censored time-to-event primary outcome, bootstrap standard error estimates are similarly obtained of the parameter estimates of α0,α1,α2,α3,α4,\alphaXY
from the output of the survreg and lm functions.
Examples
dat <- generate_data(setting ="GLM")naive_se(setting ="GLM", Y = dat$Y, X = dat$X, K = dat$K, L = dat$L)