Fit Statistics for generalized linear models
modelfit is used following a glm() or glm.nb() model to produce a list of model fit statistics.
modelfit(x)
x
: the only argument is the name of the fitted glm or glm.nb function modelmodelfit is to be used as a post-estimation function, following the use of glm() or glm.nb().
obs: number of model observatiions
aic: AIC statistic
xvars: number of model predictors
rdof: residial degrees of freedom
aic_n: AIC, 'aic'/'obs'
ll: log-likelihood
bic_r: BIC - Raftery parameterization
bic_l: BIC - log-likelihood Standard definition (Stata)
bic_qh: Hannan-Quinn IC statistic (Limdep)
Hilbe, J.M. (2011), Negative Binomial Regression, second edition, Cambridge University Press.
Hilbe, J.M. (2009), Logistic Regression Models, Chapman Hall/CRC
Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of technology
modelfit.r must be loaded into memory in order to be effectve. Users may past modelfit.r into script editor to run, as well as load it.
glm
, glm.nb
## Hilbe (2011), Table 9.17 library(MASS) data(lbwgrp) nb9_3 <- glm.nb(lowbw ~ smoke + race2 + race3 + offset(log(cases)), data=lbwgrp) summary(nb9_3) exp(coef(nb9_3)) modelfit(nb9_3)
Useful links