Negative binomial (NB-C): generic synthetic canonical negative binomial data and model
Negative binomial (NB-C): generic synthetic canonical negative binomial data and model
nbc_syn is a generic function for developing synthetic NB-C data and a model given user defined specifications.
nbc_syn(nobs=50000, alpha=1.15, xv = c(-1.5,-1.25,-.1))
Arguments
nobs: number of observations in model, Default is 50000
alpha: NB-C heterogeneity or ancillary parameter
xv: predictor coefficient values. First argument is intercept. Use as xv = c(intercept , x1_coef, x2_coef, ...)
Details
Create a synthetic canonial negative binomial (NB-C) regression model using the appropriate arguments. Model data with predictors indicated as a group with a period (.). Data can be modeled using the ml.nbc.r function in the COUNT package. See examples.
Returns
nbcy: Canonical negative binomial (NB-C) response; number of counts
sim.data: synthetic data set
References
Hilbe, J.M. (2011), Negative Binomial Regression, second edition, Cambridge University Press.
Author(s)
Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology Andrew Robinson, Universty of Melbourne, Australia.
See Also
nb2_syn, nb1_syn
Examples
## Not run:sim.data <- nbc_syn(nobs =50000, alpha =1.15, xv = c(-1.5,-1.25,-.1))mynbc <- ml.nbc(nbcy ~ . , data = sim.data)mynbc
# defaultsim.data <- nbc_syn()dnbc <- ml.nbc(nbcy ~ . , data = sim.data)dnbc
## End(Not run)