Poisson : generic synthetic Poisson data and model
Poisson : generic synthetic Poisson data and model
poisson_syn is a generic function for developing synthetic Poisson data and a model given user defined specifications.
poisson_syn(nobs =50000, off =0, xv = c(1,-.5,1))
Arguments
nobs: number of observations in model, Default is 50000
off: optional: log of offset variable
xv: predictor coefficient values. First argument is intercept. Use as xv = c(intercept , x1_coef, x2_coef, ...)
Details
Create a synthetic Poisson regression model using the appropriate arguments. Offset optional. Model data with predictors indicated as a group with a period (.). See examples.
Returns
py: Poisson response; number of counts
sim.data: synthetic data set
References
Hilbe, J.M. (2011), Negative Binomial Regression, second edition, Cambridge University Press.
Author(s)
Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology Andrew Robinson, Universty of Melbourne, Australia.
See Also
nb2_syn
Examples
# standard Poisson model with two predictors and interceptsim.data <- poisson_syn(nobs =500, xv = c(2,.75,-1.25))mypo <- glm(py ~ . , family=poisson, data = sim.data)summary(mypo)confint(mypo)# Poisson with offset and three predictorsoset <- rep(1:5, each=100, times=1)*100loff <- log(oset)sim.data <- poisson_syn(nobs =500, off = loff, xv = c(1.2,-.75,.25,-1.3))mypof <- glm(py ~ . + loff, family=poisson, data = sim.data)summary(mypof)confint(mypof)# Poisson without offset, exponentiated coefficients, CI'ssim.data <- poisson_syn(nobs =500, xv = c(2,.75,-1.25))mypo <- glm(py ~ . , family=poisson, data = sim.data)exp(coef(mypo))exp(confint(mypo))## Not run:# default (without offset)sim.data <- poisson_syn()dmypo <- glm( py ~ . , family=poisson, data = sim.data)summary(dmypo)## End(Not run)