Probit regression : generic synthetic binary/binomial probit data and model
Probit regression : generic synthetic binary/binomial probit data and model
probit_syn is a generic function for developing synthetic probit regression data and a model given user defined specifications.
probit_syn(nobs=50000, d=1, xv = c(1,0.5,-1.5))
Arguments
nobs: number of observations in model, Default is 50000
d: binomial denominator, Default is 1, a binary probit model. May use a variable containing different denominator values.
xv: predictor coefficient values. First argument is intercept. Use as xv = c(intercept , x1_coef, x2_coef, ...)
Details
Create a synthetic probit regression model using the appropriate arguments. Binomial denominator must be declared. For a binary probit model, d=1. A variable may be used as the denominator when values differ. See examples.
Returns
py: binomial probit numerator; number of successes
sim.data: synthetic data set
References
Hilbe, J.M. (2011), Negative Binomial Regression, second edition, Cambridge University Press. Hilbe, J.M. (2009), Logistic Regression Models, Chapman & Hall/CRCD
Author(s)
Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology Andrew Robinson, Universty of Melbourne, Australia.
See Also
logit_syn
Examples
# Binary probit regression (denominator=1)sim.data <-probit_syn(nobs =5000, d =1, xv = c(1,.5,-1.5))myprobit <- glm(cbind(py,dpy)~ ., family=binomial(link="probit"), data = sim.data)summary(myprobit)confint(myprobit)# Binary probit regression with 3 predictors (denominator=1)sim.data <-probit_syn(nobs =5000, d =1, xv = c(1,.75,-1.5,1.15))myprobit <- glm(cbind(py,dpy)~ ., family=binomial(link="probit"), data = sim.data)summary(myprobit)confint(myprobit)# Binomial or grouped probit regression with defined denominator, denden <- rep(1:5, each=1000, times=1)*100sim.data <- probit_syn(nobs =5000, d = den, xv = c(1,.5,-1.5))gpy <- glm(cbind(py,dpy)~ ., family=binomial(link="probit"), data = sim.data)summary(gpy)## Not run:# defaultsim.data <- probit_syn()dprobit <- glm(cbind(py,dpy)~ . , family=binomial(link="probit"), data = sim.data)summary(dprobit)## End(Not run)