Computing the partition function and marginal probabilities
infer.conditional(crf, clamped, infer.method,...)
Arguments
crf: The CRF
clamped: The vector of fixed values for clamped nodes, 0 for unfixed nodes
infer.method: The inference method to solve the clamped CRF
...: The parameters for infer.method
Returns
This function will return a list with components: - node.bel: Node belief. It is a matrix with crf$n.nodes rows and crf$max.state columns.
edge.bel: Edge belief. It is a list of matrices. The size of list is crf$n.edges and the matrix i has crf$n.states[crf$edges[i,1]] rows and crf$n.states[crf$edges[i,2]] columns.
logZ: The logarithmic value of CRF normalization factor Z.
Details
Conditional inference (takes another inference method as input)