betabinomialcsi function

Beta-Binomial probabilities of ordinal responses, given feeling parameter for each observation

Beta-Binomial probabilities of ordinal responses, given feeling parameter for each observation

Compute the Beta-Binomial probabilities of given ordinal responses, with feeling parameter specified for each observation, and with the same overdispersion parameter for all the responses.

betabinomialcsi(m,ordinal,csivett,phi)

Arguments

  • m: Number of ordinal categories
  • ordinal: Vector of ordinal responses. Missing values are not allowed: they should be preliminarily deleted or imputed
  • csivett: Vector of feeling parameters of the Beta-Binomial distribution for given ordinal responses
  • phi: Overdispersion parameter of the Beta-Binomial distribution

Returns

A vector of the same length as ordinal: each entry is the Beta-Binomial probability for the given observation for the corresponding feeling and overdispersion parameters.

Examples

data(relgoods) m<-10 ordinal<-relgoods$Tv age<-2014-relgoods$BirthYear no_na<-na.omit(cbind(ordinal,age)) ordinal<-no_na[,1]; age<-no_na[,2] lage<-log(age)-mean(log(age)) gama<-c(-0.61,-0.31) phi<-0.16 csivett<-logis(lage,gama) pr<-betabinomialcsi(m,ordinal,csivett,phi) plot(density(pr))

References

Iannario, M. (2014). Modelling Uncertainty and Overdispersion in Ordinal Data, Communications in Statistics - Theory and Methods, 43 , 771--786

Piccolo D. (2015). Inferential issues for CUBE models with covariates. Communications in Statistics - Theory and Methods, 44 (23), 771--786.

See Also

betar, betabinomial

  • Maintainer: Rosaria Simone
  • License: GPL-2 | GPL-3
  • Last published: 2024-02-23

Useful links