starting: Vector of initial estimates to start the optimization algorithm, whose length equals the number of parameters of the model
maxiter: Maximum number of iterations allowed for running the optimization algorithm
toler: Fixed error tolerance for final estimates
expinform: Logical: if TRUE, the function returns the expected variance-covariance matrix
Returns
An object of the class "CUBE"
References
Iannario, M. (2014). Modelling Uncertainty and Overdispersion in Ordinal Data, Communications in Statistics - Theory and Methods, 43 , 771--786
Iannario, M. (2015). Detecting latent components in ordinal data with overdispersion by means of a mixture distribution, Quality & Quantity, 49 , 977--987