cube000 function

Main function for CUBE models without covariates

Main function for CUBE models without covariates

Estimate and validate a CUBE model without covariates.

cube000(m, ordinal, starting, maxiter, toler, expinform)

Arguments

  • m: Number of ordinal categories
  • ordinal: Vector of ordinal responses
  • starting: Vector of initial estimates to start the optimization algorithm, whose length equals the number of parameters of the model
  • maxiter: Maximum number of iterations allowed for running the optimization algorithm
  • toler: Fixed error tolerance for final estimates
  • expinform: Logical: if TRUE, the function returns the expected variance-covariance matrix

Returns

An object of the class "CUBE"

References

Iannario, M. (2014). Modelling Uncertainty and Overdispersion in Ordinal Data, Communications in Statistics - Theory and Methods, 43 , 771--786

Iannario, M. (2015). Detecting latent components in ordinal data with overdispersion by means of a mixture distribution, Quality & Quantity, 49 , 977--987

  • Maintainer: Rosaria Simone
  • License: GPL-2 | GPL-3
  • Last published: 2024-02-23

Useful links