Log-likelihood function of CUBE models for ordinal data
Compute the log-likelihood function of a CUBE model without covariates for ordinal responses, possibly with different vectors of parameters for each observation.
loglikcuben(m, ordinal, assepai, assecsi, assephi)
m
: Number of ordinal categoriesordinal
: Vector of ordinal responsesassepai
: Vector of uncertainty parameters for the given observations (with the same length as ordinal)assecsi
: Vector of feeling parameters for the given observations (with the same length as ordinal)assephi
: Vector of overdispersion parameters for the given observations (with the same length as ordinal)m<-8 n0<-230; n1<-270 bet<-c(-1.5,1.2) gama<-c(0.5,-1.2) alpha<-c(-1.2,-0.5) pai0<-1/(1+exp(-bet[1])); csi0<-1/(1+exp(-gama[1])); phi0<-exp(alpha[1]) ordinal0<-simcube(n0,m,pai0,csi0,phi0) pai1<-1/(1+exp(-sum(bet))); csi1<-1/(1+exp(-sum(gama))); phi1<-exp(sum(alpha)) ordinal1<-simcube(n1,m,pai1,csi1,phi1) ordinal<-c(ordinal0,ordinal1) assepai<-c(rep(pai0,n0),rep(pai1,n1)) assecsi<-c(rep(csi0,n0),rep(csi1,n1)) assephi<-c(rep(phi0,n0),rep(phi1,n1)) lli<-loglikcuben(m,ordinal,assepai,assecsi,assephi)
loglikCUBE
Useful links