Variance-covariance matrix for CUBE models based on the expected information matrix
Variance-covariance matrix for CUBE models based on the expected information matrix
Compute the variance-covariance matrix of parameter estimates as the inverse of the expected information matrix for a CUBE model without covariates.
varcovcubeexp(m, pai, csi, phi, n)
Arguments
m: Number of ordinal categories
pai: Uncertainty parameter
csi: Feeling parameter
phi: Overdispersion parameter
n: Number of observations
Details
The function checks if the variance-covariance matrix is positive-definite: if not, it returns a warning message and produces a matrix with NA entries.
References
Iannario, M. (2014). Modelling Uncertainty and Overdispersion in Ordinal Data, Communications in Statistics - Theory and Methods, 43 , 771--786