p_norm function

P-Norm

P-Norm

The vector p-norm. If given a matrix variable, p_norm will treat it as a vector and compute the p-norm of the concatenated columns. methods

p_norm(x, p = 2, axis = NA_real_, keepdims = FALSE, max_denom = 1024)

Arguments

  • x: An Expression , vector, or matrix.
  • p: A number greater than or equal to 1, or equal to positive infinity.
  • axis: (Optional) The dimension across which to apply the function: 1 indicates rows, 2 indicates columns, and NA indicates rows and columns. The default is NA.
  • keepdims: (Optional) Should dimensions be maintained when applying the atom along an axis? If FALSE, result will be collapsed into an nx1n x 1 column vector. The default is FALSE.
  • max_denom: (Optional) The maximum denominator considered in forming a rational approximation for pp. The default is 1024.

Returns

An Expression representing the p-norm of the input.

Details

For p1p \geq 1, the p-norm is given by

xp=(i=1nxip)1/p \|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}

with domain xRnx \in \mathbf{R}^n. For p<1,p0p < 1, p \neq 0, the p-norm is given by

xp=(i=1nxip)1/p \|x\|_p = \left(\sum_{i=1}^n x_i^p\right)^{1/p}

with domain xR+nx \in \mathbf{R}^n_+.

  • Note that the "p-norm" is actually a norm only when p1p \geq 1 or p=+p = +\infty. For these cases, it is convex.
  • The expression is undefined when p=0p = 0.
  • Otherwise, when p\<1p \< 1, the expression is concave, but not a true norm.

Examples

x <- Variable(3) prob <- Problem(Minimize(p_norm(x,2))) result <- solve(prob) result$value result$getValue(x) prob <- Problem(Minimize(p_norm(x,Inf))) result <- solve(prob) result$value result$getValue(x) ## Not run: a <- c(1.0, 2, 3) prob <- Problem(Minimize(p_norm(x,1.6)), list(t(x) %*% a >= 1)) result <- solve(prob) result$value result$getValue(x) prob <- Problem(Minimize(sum(abs(x - a))), list(p_norm(x,-1) >= 0)) result <- solve(prob) result$value result$getValue(x) ## End(Not run)
  • Maintainer: Anqi Fu
  • License: Apache License 2.0 | file LICENSE
  • Last published: 2024-11-07