Predict conditional distribution parameters from a fitted CDEN model
Predict conditional distribution parameters from a fitted CDEN model
Predict conditional distribution parameters from a fitted CDEN model. The returned value is a matrix with columns corresponding to the parameters of the probability distribution specified in the distribution
argument passed to cadence.fit.
cadence.predict(x, fit)
Arguments
x: matrix with number of rows equal to the number of samples and number of columns equal to the number of predictor variables.
fit: list returned by cadence.fit.
Returns
a matrix with number of rows equal to that of x and columns corresponding to the parameters of the distribution
argument passed to cadence.fit.
See Also
cadence.fit, optim, rprop
Examples
data(FraserSediment) lnorm.distribution.fixed <- list(density.fcn = dlnorm, parameters = c("meanlog","sdlog"), parameters.fixed ="sdlog", output.fcns = c(identity, exp)) fit <- cadence.fit(x = FraserSediment$x.1970.1976, y = FraserSediment$y.1970.1976, hidden.fcn = identity, maxit.Nelder =100, trace.Nelder =1, trace =1, distribution = lnorm.distribution.fixed) pred <- cadence.predict(x = FraserSediment$x.1977.1979, fit = fit) matplot(pred, type ="l")