cadence.predict function

Predict conditional distribution parameters from a fitted CDEN model

Predict conditional distribution parameters from a fitted CDEN model

Predict conditional distribution parameters from a fitted CDEN model. The returned value is a matrix with columns corresponding to the parameters of the probability distribution specified in the distribution

argument passed to cadence.fit.

cadence.predict(x, fit)

Arguments

  • x: matrix with number of rows equal to the number of samples and number of columns equal to the number of predictor variables.
  • fit: list returned by cadence.fit.

Returns

a matrix with number of rows equal to that of x and columns corresponding to the parameters of the distribution

argument passed to cadence.fit.

See Also

cadence.fit, optim, rprop

Examples

data(FraserSediment) lnorm.distribution.fixed <- list(density.fcn = dlnorm, parameters = c("meanlog", "sdlog"), parameters.fixed = "sdlog", output.fcns = c(identity, exp)) fit <- cadence.fit(x = FraserSediment$x.1970.1976, y = FraserSediment$y.1970.1976, hidden.fcn = identity, maxit.Nelder = 100, trace.Nelder = 1, trace = 1, distribution = lnorm.distribution.fixed) pred <- cadence.predict(x = FraserSediment$x.1977.1979, fit = fit) matplot(pred, type = "l")
  • Maintainer: Alex J. Cannon
  • License: GPL-2
  • Last published: 2017-12-05

Useful links