compile_pseudo_pop function

Compile pseudo population

Compile pseudo population

Compiles pseudo population based on the original population and estimated GPS value.

compile_pseudo_pop( data_obj, ci_appr, gps_density, exposure_col_name, nthread, ... )

Arguments

  • data_obj: A S3 object including the following:

    • Original data set + GPS values
    • e_gps_pred
    • e_gps_std_pred
    • w_resid
    • gps_mx (min and max of gps)
    • w_mx (min and max of w).
  • ci_appr: Causal inference approach.

  • gps_density: Model type which is used for estimating GPS value, including normal and kernel.

  • exposure_col_name: Exposure data column name.

  • nthread: An integer value that represents the number of threads to be used by internal packages.

  • ...: Additional parameters.

Returns

compile_pseudo_pop returns the pseudo population data that is compiled based on the selected causal inference approach.

Details

For matching approach, use an extra parameter, bin_seq, which is sequence of w (treatment) to generate pseudo population. If NULL is passed the default value will be used, which is seq(min(w)+delta_n/2,max(w), by=delta_n).

Examples

set.seed(112) m_d <- generate_syn_data(sample_size = 100) m_xgboost <- function(nthread = 1, ntrees = 35, shrinkage = 0.3, max_depth = 5, ...) {SuperLearner::SL.xgboost( nthread = nthread, ntrees = ntrees, shrinkage=shrinkage, max_depth=max_depth, ...)} data_with_gps <- estimate_gps(.data = m_d, .formula = w ~ cf1 + cf2 + cf3 + cf4 + cf5 + cf6, gps_density = "normal", sl_lib = c("m_xgboost") ) pd <- compile_pseudo_pop(data_obj = data_with_gps, ci_appr = "matching", gps_density = "normal", bin_seq = NULL, exposure_col_name = c("w"), nthread = 1, dist_measure = "l1", covar_bl_method = 'absolute', covar_bl_trs = 0.1, covar_bl_trs_type= "mean", delta_n = 0.5, scale = 1)