Estimate generalized propensity score (GPS) values
Estimates GPS value for each observation using normal or kernel approaches.
estimate_gps( .data, .formula, gps_density = "normal", sl_lib = c("SL.xgboost"), ... )
.data
: A data frame of observed continuous exposure variable and observed covariates variable. Also includes id
column for future references..formula
: A formula specifying the relationship between the exposure variable and the covariates. For example, w ~ I(cf1^2) + cf2.gps_density
: Model type which is used for estimating GPS value, including normal
(default) and kernel
.sl_lib
: A vector of prediction algorithms to be used by the SuperLearner packageg....
: Additional arguments passed to the model.The function returns a S3 object. Including the following:
.data
: id
, exposure_var
, gps
, e_gps_pred
, e_gps_std_pred
, w_resid
params
: Including the following fields:
m_d <- generate_syn_data(sample_size = 100) data_with_gps <- estimate_gps(.data = m_d, .formula = w ~ cf1 + cf2 + cf3 + cf4 + cf5 + cf6, gps_density = "normal", sl_lib = c("SL.xgboost") )
Useful links