estimate_gps function

Estimate generalized propensity score (GPS) values

Estimate generalized propensity score (GPS) values

Estimates GPS value for each observation using normal or kernel approaches.

estimate_gps( .data, .formula, gps_density = "normal", sl_lib = c("SL.xgboost"), ... )

Arguments

  • .data: A data frame of observed continuous exposure variable and observed covariates variable. Also includes id column for future references.
  • .formula: A formula specifying the relationship between the exposure variable and the covariates. For example, w ~ I(cf1^2) + cf2.
  • gps_density: Model type which is used for estimating GPS value, including normal (default) and kernel.
  • sl_lib: A vector of prediction algorithms to be used by the SuperLearner packageg.
  • ...: Additional arguments passed to the model.

Returns

The function returns a S3 object. Including the following:

  • .data: id, exposure_var, gps, e_gps_pred, e_gps_std_pred, w_resid

  • params: Including the following fields:

    • gps_mx (min and max of gps)
    • w_mx (min and max of w).
    • .formula
    • gps_density
    • sl_lib
    • fcall (function call)

Examples

m_d <- generate_syn_data(sample_size = 100) data_with_gps <- estimate_gps(.data = m_d, .formula = w ~ cf1 + cf2 + cf3 + cf4 + cf5 + cf6, gps_density = "normal", sl_lib = c("SL.xgboost") )