generate_pseudo_pop function

Generate pseudo population

Generate pseudo population

Generates pseudo population data set based on user-defined causal inference approach. The function uses an adaptive approach to satisfies covariate balance requirements. The function terminates either by satisfying covariate balance or completing the requested number of iteration, whichever comes first.

generate_pseudo_pop( .data, cw_obj, covariate_col_names, covar_bl_trs = 0.1, covar_bl_trs_type = "maximal", covar_bl_method = "absolute" )

Arguments

  • .data: A data.frame of observation data with id column.
  • cw_obj: An S3 object of counter_weight.
  • covariate_col_names: A list of covariate columns.
  • covar_bl_trs: Covariate balance threshold
  • covar_bl_trs_type: Type of the covariance balance threshold.
  • covar_bl_method: Covariate balance method.

Returns

Returns a pseudo population (gpsm_pspop) object that is generated or augmented based on the selected causal inference approach (ci_appr). The object includes the following objects:

  • params

    • ci_appr
    • params
  • pseudo_pop

  • adjusted_corr_results

  • original_corr_results

  • best_gps_used_params

  • effect size of generated pseudo population

Examples

set.seed(967) m_d <- generate_syn_data(sample_size = 200) m_d$id <- seq_along(1:nrow(m_d)) m_xgboost <- function(nthread = 4, ntrees = 35, shrinkage = 0.3, max_depth = 5, ...) {SuperLearner::SL.xgboost( nthread = nthread, ntrees = ntrees, shrinkage=shrinkage, max_depth=max_depth, ...)} data_with_gps_1 <- estimate_gps( .data = m_d, .formula = w ~ I(cf1^2) + cf2 + I(cf3^2) + cf4 + cf5 + cf6, sl_lib = c("m_xgboost"), gps_density = "normal") cw_object_matching <- compute_counter_weight(gps_obj = data_with_gps_1, ci_appr = "matching", bin_seq = NULL, nthread = 1, delta_n = 0.1, dist_measure = "l1", scale = 0.5) pseudo_pop <- generate_pseudo_pop(.data = m_d, cw_obj = cw_object_matching, covariate_col_names = c("cf1", "cf2", "cf3", "cf4", "cf5", "cf6"), covar_bl_trs = 0.1, covar_bl_trs_type = "maximal", covar_bl_method = "absolute")