make_data_single( model, n =1, parameters =NULL, param_type =NULL, given =NULL, w =NULL, P =NULL, A =NULL)
Arguments
model: A causal_model. A model object generated by make_model.
n: An integer. Number of observations.
parameters: A numeric vector. Values of parameters may be specified. By default, parameters is drawn from priors.
param_type: A character. String specifying type of parameters to make ("flat", "prior_mean", "posterior_mean", "prior_draw", "posterior_draw", "define). With param_type set to define use arguments to be passed to make_priors; otherwise flat sets equal probabilities on each nodal type in each parameter set; prior_mean, prior_draw, posterior_mean, posterior_draw take parameters as the means or as draws from the prior or posterior.
given: A string specifying known values on nodes, e.g. "X==1 & Y==1"
w: Vector of event probabilities can be provided directly. This is useful for speed for repeated data draws.
P: A matrix. Parameter matrix that can be used to generate w if w is not provided
A: A matrix. Ambiguity matrix that can be used to generate w if w is not provided
Returns
A data.frame of simulated data.
Examples
model <- make_model("X -> Y")# Simplest behavior uses by default the parameter vector contained in modelCausalQueries:::make_data_single(model, n =5)CausalQueries:::make_data_single(model, n =5, param_type ="prior_draw")# Simulate multiple datasets. This is fastest if# event probabilities (w) are providedw <- get_event_probabilities(model)replicate(5, CausalQueries:::make_data_single(model, n =5, w = w))
See Also
Other data_generation: data_helpers, get_all_data_types(), observe_data()