model: A causal_model. A model object generated by make_model.
parameters: A vector of real numbers in [0,1]. Values of parameters to specify (optional). By default, parameters is drawn from the parameters dataframe. See inspect(model, "parameters_df").
param_type: A character. String specifying type of parameters to make "flat", "prior_mean", "posterior_mean", "prior_draw", "posterior_draw", "define". With param_type set to define use arguments to be passed to make_priors; otherwise flat sets equal probabilities on each nodal type in each parameter set; prior_mean, prior_draw, posterior_mean, posterior_draw take parameters as the means or as draws from the prior or posterior.
warning: Logical. Whether to warn about parameter renormalization.
normalize: Logical. If parameter given for a subset of a family the residual elements are normalized so that parameters in param_set sum to 1 and provided params are unaltered.
...: Options passed onto make_priors.
Returns
A vector of draws from the prior or distribution of parameters
An object of class causal_model. It essentially returns a list containing the elements comprising a model (e.g. 'statement', 'nodal_types' and 'DAG') with true vector of parameters attached to it.
A vector of draws from the prior or distribution of parameters
Examples
# make_parameters examples:# Simple examplesmodel <- make_model('X -> Y')data <- make_data(model, n =2)model <- update_model(model, data)make_parameters(model, parameters = c(.25,.75,1.25,.25,.25,.25))make_parameters(model, param_type ='flat')make_parameters(model, param_type ='prior_draw')make_parameters(model, param_type ='prior_mean')make_parameters(model, param_type ='posterior_draw')make_parameters(model, param_type ='posterior_mean')#altering values using \code{alter_at}make_model("X -> Y")|> make_parameters(parameters = c(0.5,0.25),alter_at ="node == 'Y' & nodal_type %in% c('00','01')")#altering values using \code{param_names}make_model("X -> Y")|> make_parameters(parameters = c(0.5,0.25),param_names = c("Y.10","Y.01"))#altering values using \code{statement}make_model("X -> Y")|> make_parameters(parameters = c(0.5),statement ="Y[X=1] > Y[X=0]")#altering values using a combination of other argumentsmake_model("X -> Y")|> make_parameters(parameters = c(0.5,0.25),node ="Y", nodal_type = c("00","01"))# Normalize renormalizes values not set so that value set is not renomalizedmake_parameters(make_model('X -> Y'), statement ='Y[X=1]>Y[X=0]', parameters =.5)make_parameters(make_model('X -> Y'), statement ='Y[X=1]>Y[X=0]', parameters =.5, normalize =FALSE)# set_parameters examples:make_model('X->Y')|> set_parameters(1:6)|> inspect("parameters")# Simple examplesmodel <- make_model('X -> Y')data <- make_data(model, n =2)model <- update_model(model, data)set_parameters(model, parameters = c(.25,.75,1.25,.25,.25,.25))set_parameters(model, param_type ='flat')set_parameters(model, param_type ='prior_draw')set_parameters(model, param_type ='prior_mean')set_parameters(model, param_type ='posterior_draw')set_parameters(model, param_type ='posterior_mean')#altering values using \code{alter_at}make_model("X -> Y")|> set_parameters(parameters = c(0.5,0.25),alter_at ="node == 'Y' & nodal_type %in% c('00','01')")#altering values using \code{param_names}make_model("X -> Y")|> set_parameters(parameters = c(0.5,0.25),param_names = c("Y.10","Y.01"))#altering values using \code{statement}make_model("X -> Y")|> set_parameters(parameters = c(0.5),statement ="Y[X=1] > Y[X=0]")#altering values using a combination of other argumentsmake_model("X -> Y")|> set_parameters(parameters = c(0.5,0.25),node ="Y", nodal_type = c("00","01"))