prior_setting function

Setting priors

Setting priors

Functionality for altering priors:

make_priors Generates priors for a model.

set_priors Adds priors to a model.

Extracts priors as a named vector

make_priors( model, alphas = NA, distribution = NA, alter_at = NA, node = NA, nodal_type = NA, label = NA, param_set = NA, given = NA, statement = NA, join_by = "|", param_names = NA ) set_priors( model, alphas = NA, distribution = NA, alter_at = NA, node = NA, nodal_type = NA, label = NA, param_set = NA, given = NA, statement = NA, join_by = "|", param_names = NA ) get_priors(model, nodes = NULL)

Arguments

  • model: A model object generated by make_model().
  • alphas: Real positive numbers giving hyperparameters of the Dirichlet distribution
  • distribution: string indicating a common prior distribution (uniform, jeffreys or certainty)
  • alter_at: string specifying filtering operations to be applied to parameters_df, yielding a logical vector indicating parameters for which values should be altered. (see examples)
  • node: string indicating nodes which are to be altered
  • nodal_type: string. Label for nodal type indicating nodal types for which values are to be altered
  • label: string. Label for nodal type indicating nodal types for which values are to be altered. Equivalent to nodal_type.
  • param_set: string indicating the name of the set of parameters to be altered
  • given: string indicates the node on which the parameter to be altered depends
  • statement: causal query that determines nodal types for which values are to be altered
  • join_by: string specifying the logical operator joining expanded types when statement contains wildcards. Can take values '&' (logical AND) or '|' (logical OR).
  • param_names: vector of strings. The name of specific parameter in the form of, for example, 'X.1', 'Y.01'
  • nodes: a vector of nodes

Returns

A vector indicating the parameters of the prior distribution of the nodal types ("hyperparameters").

An object of class causal_model. It essentially returns a list containing the elements comprising a model (e.g. 'statement', 'nodal_types' and 'DAG') with the priors attached to it.

A vector indicating the hyperparameters of the prior distribution of the nodal types.

Details

Seven arguments govern which parameters should be altered. The default is 'all' but this can be reduced by specifying

  • alter_at String specifying filtering operations to be applied to parameters_df, yielding a logical vector indicating parameters for which values should be altered. "node == 'X' & nodal_type

  • node, which restricts for example to parameters associated with node 'X'

  • label or nodal_type The label of a particular nodal type, written either in the form Y0000 or Y.Y0000

  • param_set The param_set of a parameter.

  • given Given parameter set of a parameter.

  • statement, which restricts for example to nodal types that satisfy the statement 'Y[X=1] > Y[X=0]'

  • param_set, given, which are useful when setting confound statements that produce several sets of parameters

Two arguments govern what values to apply:

  • alphas is one or more non-negative numbers and

  • distribution indicates one of a common class: uniform, Jeffreys, or 'certain'

Forbidden statements include:

  • Setting distribution and values at the same time.
  • Setting a distribution other than uniform, Jeffreys, or certainty.
  • Setting negative values.
  • specifying alter_at with any of node, nodal_type, param_set, given, statement, or param_names
  • specifying param_names with any of node, nodal_type, param_set, given, statement, or alter_at
  • specifying statement with any of node or nodal_type

Examples

# make_priors examples: # Pass all nodal types model <- make_model("Y <- X") make_priors(model, alphas = .4) make_priors(model, distribution = "jeffreys") model <- CausalQueries::make_model("X -> M -> Y; X <-> Y") #altering values using \code{alter_at} make_priors(model = model, alphas = c(0.5,0.25), alter_at = "node == 'Y' & nodal_type %in% c('00','01') & given == 'X.0'") #altering values using \code{param_names} make_priors(model = model, alphas = c(0.5,0.25), param_names = c("Y.10_X.0","Y.10_X.1")) #altering values using \code{statement} make_priors(model = model, alphas = c(0.5,0.25), statement = "Y[M=1] > Y[M=0]") #altering values using a combination of other arguments make_priors(model = model, alphas = c(0.5,0.25), node = "Y", nodal_type = c("00","01"), given = "X.0") # set_priors examples: # Pass all nodal types model <- make_model("Y <- X") set_priors(model, alphas = .4) set_priors(model, distribution = "jeffreys") model <- CausalQueries::make_model("X -> M -> Y; X <-> Y") #altering values using \code{alter_at} set_priors(model = model, alphas = c(0.5,0.25), alter_at = "node == 'Y' & nodal_type %in% c('00','01') & given == 'X.0'") #altering values using \code{param_names} set_priors(model = model, alphas = c(0.5,0.25), param_names = c("Y.10_X.0","Y.10_X.1")) #altering values using \code{statement} set_priors(model = model, alphas = c(0.5,0.25), statement = "Y[M=1] > Y[M=0]") #altering values using a combination of other arguments set_priors(model = model, alphas = c(0.5,0.25), node = "Y", nodal_type = c("00","01"), given = "X.0")