APEcirc computes the average prediction error (APE), defined as the average circular distance across pairs
APEcirc(real, sim, bycol = F)
Arguments
real: a vector of the values of the process at the test locations
sim: a matrix with nrow = the test locations and ncol = the number of posterior samples from the posterior distributions by WrapKrigSpWrapKrigSpTi, ProjKrigSp, ProjKrigSpTi
bycol: logical. It is TRUE if the columns of sim represent the observations and the rows the posterior samples, the default value is FALSE.
Returns
a list of two elements
ApePoints: a vector of APE, one element for each test point
Ape: the overall mean
Examples
library(CircSpaceTime)## functionsrmnorm <-function(n =1, mean = rep(0, d), varcov){ d <-if(is.matrix(varcov)) ncol(varcov)else1 z <- matrix(rnorm(n * d), n, d)%*% chol(varcov) y <- t(mean + t(z)) return(y)}######################################## Simulation ########################################set.seed(1)n <-20### simulate coordinates from a unifrom distributioncoords <- cbind(runif(n,0,100), runif(n,0,100))#spatial coordinatescoordsT <- sort(runif(n,0,100))#time coordinates (ordered)Dist <- as.matrix(dist(coords))DistT <- as.matrix(dist(coordsT))rho <-0.05#spatial decayrhoT <-0.01#temporal decaysep_par <-0.5#separability parametersigma2 <-0.3# variance of the processalpha <- c(0.5)#Gneiting covarianceSIGMA <- sigma2 *(rhoT * DistT^2+1)^(-1)* exp(-rho * Dist/(rhoT * DistT^2+1)^(sep_par/2))Y <- rmnorm(1,rep(alpha, times = n), SIGMA)#generate the linear variabletheta <- c()## wrapping stepfor(i in1:n){ theta[i]<- Y[i]%%(2*pi)}### Add plots of the simulated datarose_diag(theta)## use this values as references for the definition of initial values and priorsrho_sp.min <-3/max(Dist)rho_sp.max <- rho_sp.min+0.5rho_t.min <-3/max(DistT)rho_t.max <- rho_t.min+0.5val <- sample(1:n,round(n*0.2))#validation setset.seed(100)mod <- WrapSpTi( x = theta[-val], coords = coords[-val,], times = coordsT[-val], start = list("alpha"= c(.79,.74),"rho_sp"= c(.33,.52),"rho_t"= c(.19,.43),"sigma2"= c(.49,.37),"sep_par"= c(.47,.56),"k"= sample(0,length(theta[-val]), replace =TRUE)), priors = list("rho_sp"= c(0.01,3/4),### uniform prior on this interval"rho_t"= c(0.01,3/4),### uniform prior on this interval"sep_par"= c(1,1),### beta prior"sigma2"= c(5,5),## inverse gamma prior with mode=5/6"alpha"= c(0,20)## wrapped gaussian with large variance), sd_prop = list("sigma2"=0.1,"rho_sp"=0.1,"rho_t"=0.1,"sep_par"=0.1), iter =7000, BurninThin = c(burnin =3000, thin =10), accept_ratio =0.234, adapt_param = c(start =1, end =1000, exp =0.5), n_chains =2, parallel =FALSE, n_cores =1)check <- ConvCheck(mod,startit =1,thin =1)check$Rhat ## convergence has been reached## when plotting chains remember that alpha is a circular variablepar(mfrow = c(3,2))coda::traceplot(check$mcmc)par(mfrow = c(1,1))############## Prediction on the validation setKrig <- WrapKrigSpTi( WrapSpTi_out = mod, coords_obs = coords[-val,], coords_nobs = coords[val,], times_obs = coordsT[-val], times_nobs = coordsT[val], x_obs = theta[-val])### checking the predictionWrap_Ape <- APEcirc(theta[val], Krig$Prev_out)
References
G. Jona Lasinio, A. Gelfand, M. Jona-Lasinio, "Spatial analysis of wave direction data using wrapped Gaussian processes", The Annals of Applied Statistics 6 (2013), 1478-1498
See Also
ProjKrigSp and WrapKrigSp for posterior spatial estimations, ProjKrigSpTi and WrapKrigSpTi for posterior spatio-temporal estimations