WrapKrigSpTi function

Prediction using wrapped normal spatio-temporal model.

Prediction using wrapped normal spatio-temporal model.

WrapKrigSpTi function computes the spatio-temporal prediction for circular space-time data using samples from the posterior distribution of the space-time wrapped normal model

WrapKrigSpTi(WrapSpTi_out, coords_obs, coords_nobs, times_obs, times_nobs, x_obs)

Arguments

  • WrapSpTi_out: the functions takes the output of WrapSpTi function
  • coords_obs: coordinates of observed locations (in UTM)
  • coords_nobs: coordinates of unobserved locations (in UTM)
  • times_obs: numeric vector of observed time coordinates
  • times_nobs: numeric vector of unobserved time coordinates
  • x_obs: observed values

Returns

a list of 3 elements

  • M_out: the mean of the associated linear process on the prediction locations coords_nobs (rows) over all the posterior samples (columns) returned by WrapSpTi
  • V_out: the variance of the associated linear process on the prediction locations coords_nobs (rows) over all the posterior samples (columns) returned by WrapSpTi
  • Prev_out: the posterior predicted values at the unobserved locations

Implementation Tips

To facilitate the estimations, the observations x are centered around π\pi. Posterior samples of x at the predictive locations and posterior mean are changed back to the original scale

Examples

library(CircSpaceTime) ## functions rmnorm <- function(n = 1, mean = rep(0, d), varcov){ d <- if (is.matrix(varcov)) ncol(varcov) else 1 z <- matrix(rnorm(n * d), n, d) %*% chol(varcov) y <- t(mean + t(z)) return(y) } ###################################### ## Simulation ## ###################################### set.seed(1) n <- 20 ### simulate coordinates from a unifrom distribution coords <- cbind(runif(n,0,100), runif(n,0,100)) #spatial coordinates coordsT <- sort(runif(n,0,100)) #time coordinates (ordered) Dist <- as.matrix(dist(coords)) DistT <- as.matrix(dist(coordsT)) rho <- 0.05 #spatial decay rhoT <- 0.01 #temporal decay sep_par <- 0.5 #separability parameter sigma2 <- 0.3 # variance of the process alpha <- c(0.5) #Gneiting covariance SIGMA <- sigma2 * (rhoT * DistT^2 + 1)^(-1) * exp(-rho * Dist/(rhoT * DistT^2 + 1)^(sep_par/2)) Y <- rmnorm(1,rep(alpha, times = n), SIGMA) #generate the linear variable theta <- c() ## wrapping step for(i in 1:n) { theta[i] <- Y[i] %% (2*pi) } ### Add plots of the simulated data rose_diag(theta) ## use this values as references for the definition of initial values and priors rho_sp.min <- 3/max(Dist) rho_sp.max <- rho_sp.min+0.5 rho_t.min <- 3/max(DistT) rho_t.max <- rho_t.min+0.5 val <- sample(1:n,round(n*0.2)) #validation set set.seed(100) mod <- WrapSpTi( x = theta[-val], coords = coords[-val,], times = coordsT[-val], start = list("alpha" = c(.79, .74), "rho_sp" = c(.33,.52), "rho_t" = c(.19, .43), "sigma2" = c(.49, .37), "sep_par" = c(.47, .56), "k" = sample(0,length(theta[-val]), replace = TRUE)), priors = list("rho_sp" = c(0.01,3/4), ### uniform prior on this interval "rho_t" = c(0.01,3/4), ### uniform prior on this interval "sep_par" = c(1,1), ### beta prior "sigma2" = c(5,5),## inverse gamma prior with mode=5/6 "alpha" = c(0,20) ## wrapped gaussian with large variance ) , sd_prop = list( "sigma2" = 0.1, "rho_sp" = 0.1, "rho_t" = 0.1,"sep_par"= 0.1), iter = 7000, BurninThin = c(burnin = 3000, thin = 10), accept_ratio = 0.234, adapt_param = c(start = 1, end = 1000, exp = 0.5), n_chains = 2 , parallel = FALSE, n_cores = 1 ) check <- ConvCheck(mod,startit = 1 ,thin = 1) check$Rhat ## convergence has been reached ## when plotting chains remember that alpha is a circular variable par(mfrow = c(3,2)) coda::traceplot(check$mcmc) par(mfrow = c(1,1)) ############## Prediction on the validation set Krig <- WrapKrigSpTi( WrapSpTi_out = mod, coords_obs = coords[-val,], coords_nobs = coords[val,], times_obs = coordsT[-val], times_nobs = coordsT[val], x_obs = theta[-val] ) ### checking the prediction Wrap_Ape <- APEcirc(theta[val], Krig$Prev_out) Wrap_Crps <- CRPScirc(theta[val], Krig$Prev_out)

References

G. Mastrantonio, G. Jona Lasinio, A. E. Gelfand, "Spatio-temporal circular models with non-separable covariance structure", TEST 25 (2016), 331–350

T. Gneiting, "Nonseparable, Stationary Covariance Functions for Space-Time Data", JASA 97 (2002), 590-600

See Also

WrapSpTi spatio-temporal sampling from Wrapped Normal, ProjSpTi for spatio-temporal sampling from Projected Normal and ProjKrigSpTi for Kriging estimation