ClustBlock4.1.1 package

Clustering of Datasets

catatis_jar

Perform the CATATIS method on Just About Right data.

catatis_rata

Perform the CATATIS method on different blocks from a RATA experiment

catatis

Perform the CATATIS method on different blocks from a CATA experiment

change_cata_format

Change format of CATA datasets to perform CATATIS or CLUSCATA function

change_cata_format2

Change format of CATA datasets to perform the package functions

cluscata_jar

Perform a cluster analysis of subjects in a JAR experiment.

cluscata_kmeans_jar

Perform a cluster analysis of subjects in a JAR experiment

cluscata_kmeans

Compute the CLUSCATA partitioning algorithm on different blocks from a...

cluscata_rata

Perform a cluster analysis of subjects from a RATA experiment

cluscata

Perform a cluster analysis of subjects from a CATA experiment

ClusMB

Perform a cluster analysis of rows in a Multi-block context with the C...

clustatis_FreeSort_kmeans

Compute the CLUSTATIS partitioning algorithm on free sorting data

clustatis_FreeSort

Perform a cluster analysis of free sorting data

clustatis_kmeans

Compute the CLUSTATIS partitioning algorithm on different blocks of qu...

clustatis

Perform a cluster analysis of blocks of quantitative variables

ClustBlock-package

Clustering of Datasets

clustRowsOnStatisAxes

Perform a cluster analysis of rows in a Multi-block context with clust...

consistency_cata_panel

Test the consistency of the panel in a CATA experiment

consistency_cata

Test the consistency of each attribute in a CATA experiment

indicesClusters

Compute the indices to evaluate the quality of the cluster partition i...

plot.catatis

Displays the CATATIS graphs

plot.cluscata

Displays the CLUSCATA graphs

plot.clusRows

Displays the ClusMB and clustRowsOnstatisAxes graphs

plot.clustatis

Displays the CLUSTATIS graphs

plot.statis

Display the STATIS charts

preprocess_FreeSort

Preprocessing for Free Sorting Data

preprocess_JAR

Preprocessing for Just About Right Data

print.catatis

Print the CATATIS results

print.cluscata

Print the CLUSCATA results

print.clusRows

Print the ClusMB or clustering on STATIS axes results

print.clustatis

Print the CLUSTATIS results

print.statis

Print the STATIS results

simil_groups_cata

Testing the difference in perception between two predetermined groups ...

statis_FreeSort

Performs the STATIS method on Free Sorting data

statis

Performs the STATIS method on different blocks of quantitative variabl...

summary.catatis

Show the CATATIS results

summary.cluscata

Show the CLUSCATA results

summary.clusRows

Show the ClusMB or clustering on STATIS axes results

summary.clustatis

Show the CLUSTATIS results

summary.statis

Show the STATIS results

Hierarchical and partitioning algorithms to cluster blocks of variables. The partitioning algorithm includes an option called noise cluster to set aside atypical blocks of variables. Different thresholds per cluster can be sets. The CLUSTATIS method (for quantitative blocks) (Llobell, Cariou, Vigneau, Labenne & Qannari (2020) <doi:10.1016/j.foodqual.2018.05.013>, Llobell, Vigneau & Qannari (2019) <doi:10.1016/j.foodqual.2019.02.017>) and the CLUSCATA method (for Check-All-That-Apply data) (Llobell, Cariou, Vigneau, Labenne & Qannari (2019) <doi:10.1016/j.foodqual.2018.09.006>, Llobell, Giacalone, Labenne & Qannari (2019) <doi:10.1016/j.foodqual.2019.05.017>) are the core of this package. The CATATIS methods allows to compute some indices and tests to control the quality of CATA data. Multivariate analysis and clustering of subjects for quantitative multiblock data, CATA, RATA, Free Sorting and JAR experiments are available. Clustering of rows in multi-block context (notably with ClusMB strategy) is also included.

  • Maintainer: Fabien Llobell
  • License: MIT + file LICENSE
  • Last published: 2025-06-11